TA Document 1999010

Editorial Corrections to the Asynchronous Serial Bus Connections, Version 1.0

January 3, 1999

Sponsored by:
1394 Trade Association

Accepted for Release by:
1394 Trade Association Board of Directors.

Abstract:
This document describes the editorial corrections to the documents “AV/C Compatible Asynchronous Serial Bus Connections, Version 1.0” and “AV/C commands for management of Asynchronous Serial Bus Connections, Version 1.0”.

Keywords:
Audio, Video, 1394, Digital, Interface, Asynchronous, Connection, Management.
1394 Trade Association Specifications are developed within Working Groups of the 1394 Trade Association, a non-profit industry association devoted to the promotion of and growth of the market for IEEE 1394-compliant products. Participants in working groups serve voluntarily and without compensation from the Trade Association. Most participants represent member organizations of the 1394 Trade Association. The specifications developed within the working groups represent a consensus of the expertise represented by the participants.

Use of a 1394 Trade Association Specification is wholly voluntary. The existence of a 1394 Trade Association Specification is not meant to imply that there are not other ways to produce, test, measure, purchase, market or provide other goods and services related to the scope of the 1394 Trade Association Specification. Furthermore, the viewpoint expressed at the time a specification is accepted and issued is subject to change brought about through developments in the state of the art and comments received from users of the specification. Users are cautioned to check to determine that they have the latest revision of any 1394 Trade Association Specification.

Comments for revision of 1394 Trade Association Specifications are welcome from any interested party, regardless of membership affiliation with the 1394 Trade Association. Suggestions for changes in documents should be in the form of a proposed change of text, together with appropriate supporting comments.

Interpretations: Occasionally, questions may arise about the meaning of specifications in relationship to specific applications. When the need for interpretations is brought to the attention of the 1394 Trade Association, the Association will initiate action to prepare appropriate responses.

Comments on specifications and requests for interpretations should be addressed to:

Editor, 1394 Trade Association
Regency Plaza Suite 350
2350 Mission College Blvd.
Santa Clara, Calif. 95054, USA

1394 Trade Association Specifications are adopted by the 1394 Trade Association without regard to patents which may exist on articles, materials or processes or to other proprietary intellectual property which may exist within a specification. Adoption of a specification by the 1394 Trade Association does not assume any liability to any patent owner or any obligation whatsoever to those parties who rely on the specification documents. Readers of this document are advised to make an independent determination regarding the existence of intellectual property rights, which may be infringed by conformance to this specification.
Contact Information

Much of the information in this document is preliminary and subject to change. Members of the AVWG are encouraged to review and provide inputs for this proposal. For document status updates, please contact:

Takahiko Nankou, Workitem Project Leader
Matsushita Electric Industrial Co., Ltd.
NBD Group, 4th NBD Project
AVC Products Development Laboratory, AVC Company
2-15, Matsuba-cho, Kadoma,
Osaka, 571-8503 Japan
E-Mail: nankou@avrl.mei.co.jp
Phone: +81-6-6901-1161
Fax: +81-6-6906-6549

You can also submit comments using the 1394 TA reflector. Its web site address is:

www.1394ta.org

Go to the members-only section and select the AVWG reflector. You will need to have signed up for the reflector.

NOTE — The information on this page should be removed when this document is accepted.
Table of Contents

1. Overview ... 7
 1.1 Purpose of this document ... 7

2. References .. 8

3. Definitions .. 9
 3.1 Conformance Levels ... 9
 3.2 Glossary of Terms .. 9
 3.3 Acronyms and Abbreviations .. 9

4. Editorial corrections .. 12
 4.1 Corrections to “AV/C Compatible Asynchronous Serial Bus Connections, Version 1.0” 12
 4.1.1 The definitions of “LESS” and “LOST” .. 12
 4.1.2 List of the figures to be corrected ... 12
 4.1.3 List of editorial corrections ... 14
 4.2 Corrections to “AV/C commands for management of Asynchronous Serial Bus Connections, 15
 4.2.1 Description about “Reserved locations” ... 15
 4.2.2 Definition of “write interval” field ... 15
 4.2.3 List of editorial corrections ... 16
List of Figures

Figure 4.1 – Correction of “Figure 27” of the document [R1] ... 13
Figure 4.2 – Correction of “Figure 28” of the document [R1] ... 13
List of Tables

Table 4.1 – iAPR.mode values.. 12
Table 4.2 – List of corrections of the document [R1]... 14
Table 4.3 – List of corrections of the document [R2]... 16
1. Overview

1.1 Purpose of this document

This document describes the editorial corrections to the following two documents:

The corrections described in this document will be included in the future version of the above two documents.
2. References

This standard shall be used in conjunction with the following publications.

3. Definitions

3.1 Conformance Levels

3.1.1 expected: A key word used to describe the behavior of the hardware or software in the design models assumed by this Specification. Other hardware and software design models may also be implemented.

3.1.2 may: A key word that indicates flexibility of choice with no implied preference.

3.1.3 shall: A key word indicating a mandatory requirement. Designers are required to implement all such mandatory requirements.

3.1.4 should: A key word indicating flexibility of choice with a strongly preferred alternative. Equivalent to the phrase is recommended.

3.1.5 reserved codes: A set of codes for a reserved field that are defined in this specification, but not otherwise used. Future specifications may implement the use of these codes. A product implementing this specification shall not generate these codes.

3.1.6 reserved fields: A set of bits for a reserved field that are defined in this specification, but are not otherwise used. Products that implement this specification shall zero these fields. Products that implement future revisions of this specification may set these codes as defined by the specification.

NOTE — The IEEE is investigating whether the “may, shall, should” and possibly “expected” terms will be formally defined by IEEE. If and when this occurs, draft editors should obtain their conformance definitions from the latest IEEE style document.

3.2 Glossary of Terms

3.2.1 byte: Eight bits of data, used as a synonym for octet.

3.2.3 quadlet: Four bytes of data.

3.3 Acronyms and Abbreviations

Many bus and interconnect-related technical terms are used in this document. These terms are described below:

3.3.1 asynchronous connection: A logical point-to-point communication path established between producer and consumer nodes, that supports robust high-bandwidth, flow-controlled transfers of one or more data frames.

3.3.2 asynchronous-connection consumer (abbreviated as consumer): The component of a node that consumes data frames provided by the asynchronous connection producer.

3.3.3 asynchronous-connection producer (abbreviated as producer): The component of a node that produces data frames for consumption by the asynchronous connection consumer.
3.3.4 connection: The attachment of a producer plug to a consumer plug for the purpose of sending an asynchronous stream of data frames.

3.3.5 consumer: (see asynchronous connection consumer).

3.3.6 CompareSwap4: A bus transaction that conditionally stores a next value to a specified address and returns the previous data value from that address. The store occurs when the addressed memory value and a second test value are equal. In the CSR Architecture, this is called a 4-byte compare_swap transaction.

3.3.7 compound plug: A collection of plugs that can be simultaneously connected to matching set of plugs using one sequence of connection-establishment commands.

3.3.8 consumer port: A port that is the sink of data frames and is flow controlled by updates of its externally visible iAPR control register.

3.3.9 data frame (abbreviated as frame): A contiguous group of data bytes sent between producer and consumer.

3.3.10 data segment (abbreviated as segment): A largest portion of a data frame that can be written into the segment buffer before updating the consumer’s iAPR.

3.3.11 file-type transfers. An asynchronous connection data transfer that has no real-time delivery constraints that could force discarding of selected frames (as distinguished from stream-type transfers).

3.3.12 frame: (see data frame).

3.3.13 input Asynchronous Port Register (abbreviated as iAPR): A consumer-resident register affiliated with a consumer port, that is updated by the producer to indicate how much of data has been written to the segment buffer. This register also has other bits that are used for demarcation of variable-length frames, and to support the connection disconnect sequence.

3.3.14 output Asynchronous Port Register (abbreviated as oAPR): A producer-resident register affiliated with a producer port on a plug, that is updated by the consumer to indicate how much data can be safely written by the producer. This register also has other bits that are used for demarcation of variable-length frames, and to support the connection disconnect sequence.

3.3.15 payload: The portion of a request or response packet that contains data defined by an application layer.

3.3.16 plug: A collection of externally visible components (called ports) that can be connected to a subunit for the purposes of sending sequences of variable-length frames.

3.3.17 port: A subcomponent of a plug that supports unidirectional data transfers.

3.3.18 producer: (see asynchronous connection producer).

3.3.19 producer port: A port that is the source of data frames and is flow controlled by updates of its externally visible oAPR control register.

3.3.20 segment: (see data segment).

3.3.21 segment buffer: An externally visible address space on a consumer into which data is written by the connected producer.

3.3.22 stream-type transfers. An asynchronous connection data transfer that has real-time delivery
constraints, where these delivery constraints can force discarding of selected frames (as distinguished from file-type transfers).
4. Editorial corrections

4.1 Corrections to “AV/C Compatible Asynchronous Serial Bus Connections, Version 1.0”

4.1.1 The definitions of “LESS” and “LOST”

In the page 31 of the document [R1], “LESS” and “LOST” values are defined as follows.

<table>
<thead>
<tr>
<th>mode</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>FREE</td>
<td>Producer initiated disconnection sequence (Initial state)</td>
</tr>
<tr>
<td>1</td>
<td>MORE</td>
<td>The frame has not yet ended</td>
</tr>
<tr>
<td>2</td>
<td>SUSPENDED</td>
<td>Suspend confirmation; suspended frame transfers</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>reserved</td>
</tr>
<tr>
<td>4</td>
<td>LAST</td>
<td>A successful frame transfer</td>
</tr>
<tr>
<td>5</td>
<td>LESS</td>
<td>A truncated-length frame was transferred</td>
</tr>
<tr>
<td>6</td>
<td>JUNK</td>
<td>A corrupted frame was transferred</td>
</tr>
<tr>
<td>7</td>
<td>LOST</td>
<td>A zero-length pseudo frame, making a discarded frame location</td>
</tr>
</tbody>
</table>

The following is the detailed description of LESS value:

“The LESS indication labels the last segment in abnormal frame, when the abnormal frame contains valid data but the frame was truncated early.”

The following is the detailed description of “LOST” value:

“The LOST indication labels a zero length frame, marking where one or more frames have been lost.”

On the other hand, State Machine definitions and other parts of the document describe the “LOST” indication as the confirmation of “TOSS” indication.

Furthermore, in case that frame transmission had been aborted by “TOSS” indication, if any segment data had been transferred, the confirmation should be “LESS” but there are some descriptions that “LOST” is used. These are considered as editorial errors.

4.1.2 List of the figures to be corrected

The following is Figure 27 from page 37 of the document [R1], where the “LOST” indication is incorrect, shall be “LESS”, because the 32KB of the frame A had been transmitted:
The following is Figure 28 from page 38 of the document [R1], where the “LOST” indication is incorrect, shall be “LESS”, because the 32KB of the frame A had been transmitted:

![Diagram of frame processing](image)

Figure 4.2 – Correction of “Figure 28” of the document [R1]
4.1.3 List of editorial corrections

The following table is the list of corrections of the document [R1].

Table 4.2 – List of corrections of the document [R1]

<table>
<thead>
<tr>
<th>Where</th>
<th>Incorrect description</th>
<th>Correct description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page 37, Figure 27</td>
<td>iAPR= 0k</td>
<td>sc=1</td>
</tr>
<tr>
<td>Page 37, last paragraph</td>
<td>The consumer returns a TOSS indication, acknowledging the iAPR update but indicating the segment buffer was discarded due to a congested consumer condition. In this example, the producer commits to discarding this frame and provides the consumer with a LOST indication.</td>
<td>The consumer returns a TOSS indication, acknowledging the iAPR update but indicating the segment buffer was discarded due to a congested consumer condition. In this example, the producer commits to discarding this frame and provides the consumer with a LESS indication.</td>
</tr>
<tr>
<td>Page 38, Figure 28</td>
<td>iAPR= 0k</td>
<td>sc=1</td>
</tr>
<tr>
<td></td>
<td>3k frame processed</td>
<td>No frame processed</td>
</tr>
<tr>
<td>Page 50, Figure 40: TX1b actions</td>
<td>iAPRCopy.mode = LOST;</td>
<td>iAPRCopy.mode = EndOfFrame(iAPRCopy.mode) ? LOST : LESS ;</td>
</tr>
<tr>
<td>Page 53, TX1b description</td>
<td>TX1b. A changed oAPR with a TOSS indication causes the remainder of the frame to be discarded and a LOST confirmation is provided.</td>
<td>TX1b. When iAPRCopy.mode == MORE, in this case, an updated oAPR as a TOSS indication causes the remainder of the frame to be discarded and a LESS indication is provided. In the others (such as LAST, LESS, JUNK, LOST), an updated oAPR as a TOSS indication causes one or more Frame to be discarded and a LOST indication is provided.</td>
</tr>
<tr>
<td>Page 58, Figure 43, RX3c condition</td>
<td>BusRestEvent() == TRUE</td>
<td>BusResetEvent() == TRUE</td>
</tr>
<tr>
<td>Page 31</td>
<td>NOTE—The LOST indication is intended to be used by stream-type subunits, and is not expected to be used by file-type subunit.</td>
<td>(remove)</td>
</tr>
</tbody>
</table>
4.2 Corrections to “AV/C commands for management of Asynchronous Serial Bus Connections, Version 1.0”

4.2.1 Description about “Reserved locations”

The section 3.7.1 “Reserved locations”, page 7 shall be replaced with the following sentence.

3.7.1 Reserved fields

The reserved field shall be set as defined in the section 3.1, “Rules for the reserved fields”, page 5 of “Enhancements to the AV/C General Specification 3.0, Version 1.0, January 26, 1999”.

4.2.2 Definition of “write interval ” field

In the page 27 of the document [R2], says that “write interval” field has no meaning when ct=0.

The background of this definition had been that “if ct = 0, producer node shall not issue the next write request, producer would not receive ack_busy”.

But, even if the ct bit is zero, the consumer port might return “ack_busy”.

Considerable situation:
There might be another producer node writing into the another segment buffer on the consumer node.

The controller may issue (a lot of) AV/C commands to the consumer during the segment writes.

In such situations above, the consumer may return “ack_busy” to the producer, because it might be busy to process transactions requested from other node than the connected producer, although the previous write transaction had been completed.

Therefore, it should be defined that “write interval field is valid regardless of ct value”.

The definition of “write interval” field should be changed as follows:

4.2.3 List of editorial corrections

The following table is the list of corrections of the document [R2].

<table>
<thead>
<tr>
<th>Where</th>
<th>Incorrect description</th>
<th>Correct description</th>
</tr>
</thead>
</table>
| Page 26, “write interval” description | write interval indicates the required interval of Serial Bus Write Transactions that would be issued to the consumer port, to avoid a number of “ack_busy” returning. Interval time of write transactions can be calculated as follows:
\[
\text{Interval Time} = (\text{Nominal Cycle Time}) \times 2^{(\text{write interval})}
\]
If the ct bit of the consumer port is zero, this field has no meaning and its value is F16. | If the ct bit of the consumer port is one, write interval indicates the required interval of Serial Bus Write request (TR_DATA.req) that would be issued to the consumer port, to avoid a number of “ack_busy” returning. If the ct bit of the consumer port is zero, this field indicates the required interval from failed transaction (TR_DATA.conf with “Request status = RETRY LIMIT”) to the next write request retry (TR_DATA.req). Interval time of write transactions request can be calculated as follows:
\[
\text{Interval Time} = (\text{Nominal Cycle Time}) \times 2^{(\text{write interval})}
\]
The detailed definitions of “TR_DATA.req” and “TR_DATA.conf” are described in the reference [1] (Section 7.1.2). |
<p>| Page 64, Figure 7.3.1 P2e conditions | avc_cmd(&ctrl, req) != NULL && (conditions P2a, P2b and P2c don’t apply) | avc_cmd(&ctrl, req) != NULL && (conditions P2a, P2b and P2d don’t apply) |
| Page 65, Transition P1d. | While the dr is one, … | While the dr is one, … |
| Page 18 | After a single frame data had been transmitted (5), the producer indicates the EndOfFrame by updating the consumer-resident iAPR register’s mode value to LAST, LESS, JUNK, TOSS or LOST (6). | After a single frame data had been transmitted (5), the producer indicates the EndOfFrame by updating the consumer-resident iAPR register’s mode value to LAST, LESS, JUNK or LOST (6). |</p>
<table>
<thead>
<tr>
<th>Where</th>
<th>Incorrect description</th>
<th>Correct description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page 18</td>
<td>If error condition occurred during a single frame transmission (iAPR register’s mode value was LESS, JUNK, TOSS or LOST), and the connection might have been broken), …</td>
<td>If error condition occurred during a single frame transmission (iAPR register’s mode value was LESS, JUNK or LOST), and the connection might have been broken), …</td>
</tr>
<tr>
<td>Page 19</td>
<td>After a single frame data had been transmitted (5), the producer indicates the EndOfFrame by updating the consumer-resident iAPR register’s mode value to LAST, LESS, JUNK, TOSS or LOST (6).</td>
<td>After a single frame data had been transmitted (5), the producer indicates the EndOfFrame by updating the consumer-resident iAPR register’s mode value to LAST, LESS, JUNK or LOST (6).</td>
</tr>
<tr>
<td>Page 19</td>
<td>If error condition occurred during a single frame transmission (iAPR register’s mode value was LESS, JUNK, TOSS or LOST), and the connection might have been broken), …</td>
<td>If error condition occurred during a single frame transmission (iAPR register’s mode value was LESS, JUNK or LOST), and the connection might have been broken), …</td>
</tr>
<tr>
<td>Page 54, Last sentence</td>
<td>When a STATUS command is issued to the consumer port, port ID value shall be set to 016.</td>
<td>When a STATUS command is issued to the producer port, port ID value shall be set to specified port ID value (116~E16), which identifies the producer port.</td>
</tr>
<tr>
<td>Page 55, above Table 6-4.3</td>
<td>When a STATUS command is issued to the consumer port, port ID value shall be set to specified port ID value (116~E16), which identifies the producer port.</td>
<td>When a STATUS command is issued to the consumer port, port ID value shall be set to 016.</td>
</tr>
<tr>
<td>Page 58, C1a action</td>
<td>avc_rsp(ctrl,ACCEPTED,req); AttachEvent_req(cinfo);</td>
<td>avc_rsp(ctrl,ACCEPTED,req); if(cint->ex) ctrl_bak=ctrl; AttachEvent_req(cinfo);</td>
</tr>
<tr>
<td>Page 58, C1b condition</td>
<td>avc_cmd(&ctrl,req)==ATTACH_FRAME && ex && legal_access</td>
<td>avc_cmd(&ctrl,req)==ATTACH_FRAME && req->ex && legal_access</td>
</tr>
<tr>
<td>Page 58, C1b action</td>
<td>memcpy(hold,req); avc_rsp(ctrl,INTERIM,req);</td>
<td>memcpy(hold,req); ctrl_bak=ctrl; avc_rsp(ctrl,INTERIM,req);</td>
</tr>
<tr>
<td>Page 64, P2a action</td>
<td>setupInfo(pinfo,req); avc_rsp(ctrl,ACCEPTED,req);</td>
<td>setupInfo(pinfo,req); if(pinfo->ex) ctrl_bak=ctrl; avc_rsp(ctrl,ACCEPTED,req);</td>
</tr>
<tr>
<td>Page 64, P2b action</td>
<td>setupInfo(pinfo,req); avc_rsp(ctrl,INTERIM,req);</td>
<td>setupInfo(pinfo,req); memcpy(hold,req); ctrl_bak=ctrl; avc_rsp(ctrl,INTERIM,req);</td>
</tr>
</tbody>
</table>