
Copyright  1996-2001 by the 1394 Trade Association.
Regency Plaza Suite 350, 2350 Mission College Blvd., Santa Clara, CA 95054, USA
http://www.1394TA.org
All rights reserved.

Permission is granted to members of the 1394 Trade Association to reproduce this document for their own use or the use of other 1394 Trade
Association members only, provided this notice is included. All other rights reserved. Duplication for sale, or for commercial or for-profit use is strictly
prohibited without the prior written consent of the 1394 Trade Association.

TA Document 1999025
AV/C Descriptor Mechanism Specification
Version 1.0

July 23, 2001

Sponsored by:
1394 Trade Association

Accepted for Release by:
1394 Trade Association Board of Directors.

Abstract:
This specification defines AV/C general descriptors and information blocks and their protocol,
which is a standard way for AV/C devices to share information.

Keywords:
Descriptor, Info Block.

AV/C Descriptor Mechanism Specification Version 1.0 TA Document 1999025, July 23, 2001

Page 2 Copyright  2001, 1394 Trade Association. All rights reserved.

1394 Trade Association Specifications are developed within Working Groups of the 1394 Trade
Association, a non-profit industry association devoted to the promotion of and growth of the market for
IEEE 1394-compliant products. Participants in working groups serve voluntarily and without compensation
from the Trade Association. Most participants represent member organizations of the 1394 Trade
Association. The specifications developed within the working groups represent a consensus of the expertise
represented by the participants.

Use of a 1394 Trade Association Specification is wholly voluntary. The existence of a 1394 Trade
Association Specification is not meant to imply that there are not other ways to produce, test, measure,
purchase, market or provide other goods and services related to the scope of the 1394 Trade Association
Specification. Furthermore, the viewpoint expressed at the time a specification is accepted and issued is
subject to change brought about through developments in the state of the art and comments received from
users of the specification. Users are cautioned to check to determine that they have the latest revision of any
1394 Trade Association Specification.

Comments for revision of 1394 Trade Association Specifications are welcome from any interested party,
regardless of membership affiliation with the 1394 Trade Association. Suggestions for changes in
documents should be in the form of a proposed change of text, together with appropriate supporting
comments.

Interpretations: Occasionally, questions may arise about the meaning of specifications in relationship to
specific applications. When the need for interpretations is brought to the attention of the 1394 Trade
Association, the Association will initiate action to prepare appropriate responses.

Comments on specifications and requests for interpretations should be addressed to:

Editor, 1394 Trade Association
Regency Plaza Suite 350
2350 Mission College Blvd.
Santa Clara, Calif. 95054, USA

1394 Trade Association Specifications are adopted by the 1394 Trade Association
without regard to patents which may exist on articles, materials or processes or to other
proprietary intellectual property which may exist within a specification. Adoption of a
specification by the 1394 Trade Association does not assume any liability to any patent
owner or any obligation whatsoever to those parties who rely on the specification
documents. Readers of this document are advised to make an independent determination
regarding the existence of intellectual property rights, which may be infringed by
conformance to this specification.

TA Document 1999025, July 23, 2001 AV/C Descriptor Mechanism Specification Version 1.0

 Copyright  2001, 1394 Trade Association. All rights reserved. Page 3

Table of Contents

1. Overview...11
1.1 Purpose...11
1.2 Scope..11

2. References...12
2.1 Reference sources...12
2.2 Specifications ...12

3. Changes from previous version...13

4. Definitions...16
4.1 Conformance levels..16
4.2 Glossary of terms ...16
4.3 Acronyms and abbreviations ..17

5. Data structure conventions..19
5.1 Endian-ness ..19
5.2 Command frame figures...19
5.3 Command-response tables..20
5.4 Descriptor field qualifiers...20
5.5 General data structures ...21
5.6 Naming convention in specifications (informative) ...22
5.7 User-modifiable text fields (informative)...22

6. AV/C descriptor and info block mechanism ...23
6.1 Overview..23

6.1.1 Descriptors ...23
6.1.2 Information blocks ...24

6.2 Hierarchies using general descriptor types...25
6.2.1 Root list descriptor ...25
6.2.2 Parent and child descriptors ...25
6.2.3 Multiple parents ...26

6.3 Descriptor identification...27
6.3.1 List, entry, and info block type fields...27
6.3.2 List ID values ...29
6.3.3 Object_IDs ...29
6.3.4 Identifying entries by position..30

6.4 Object and object group representations (informative) ..30

7. General descriptor and info block data structures ...32
7.1 Unit identifier descriptor ..32

7.1.1 Unit identifier descriptor fields ..32
7.2 Subunit identifier descriptor...35

7.2.1 Subunit identifier descriptor fields...35
7.3 List descriptor...38

7.3.1 List descriptor fields...38
7.4 Entry descriptor ..41

7.4.1 Entry descriptor fields ..41
7.5 Specific information fields in descriptors (informative) ..43
7.6 Information blocks ...45

7.6.1 Information block structure..47

AV/C Descriptor Mechanism Specification Version 1.0 TA Document 1999025, July 23, 2001

Page 4 Copyright  2001, 1394 Trade Association. All rights reserved.

7.6.2 Expanding information block structures...48
7.6.3 Restrictions on information block contents ..49

8. Referencing descriptors and info blocks ...50
8.1 Descriptor specifier ..50
8.2 Descriptor_specifiers for descriptors..51

8.2.1 (Sub)unit identifier descriptor specifier type..51
8.2.2 List descriptor specified by list ID ...51
8.2.3 List descriptor specified by list_type..52
8.2.4 Entry descriptor specified by position in its list ...52
8.2.5 Entry descriptor specified by object_ID...53
8.2.6 Entry descriptor specified by entry_type..53
8.2.7 Entry descriptor specified only by object_ID...54
8.2.8 Advantages and disadvantages of specifying by object_ID and entry_position (informative)54

8.3 Information block reference path..55
8.3.1 The info_block_reference_path structure ...56

8.4 Descriptor_specifiers for info blocks..56
8.4.1 Info block specified by info block type and instance count ...56
8.4.2 Info block specified by position in container structure...57

8.5 Info block reference path examples..57

9. Descriptor and info block commands..59
9.1 Descriptor commands overview ...59
9.2 Reading and writing AV/C descriptor structures..59

9.2.1 Access support..61
9.2.2 Access rules..61
9.2.3 Unit/subunit requirements ..65
9.2.4 Legacy device behavior..66

9.3 CREATE DESCRIPTOR command...67
9.3.1 CREATE DESCRIPTOR control command ..67

9.4 OPEN DESCRIPTOR command..76
9.4.1 OPEN DESCRIPTOR control command ...76
9.4.2 OPEN DESCRIPTOR status command ...78
9.4.3 OPEN DESCRIPTOR notify command ...81

9.5 READ DESCRIPTOR command ...83
9.5.1 READ DESCRIPTOR control command...83
9.5.2 Reading the (sub)unit identifier descriptor example...85
9.5.3 Reading a list or an entry example ...85

9.6 WRITE DESCRIPTOR command ...86
9.6.1 WRITE DESCRIPTOR control command ...86
9.6.2 WRITE DESCRIPTOR status command ...96

9.7 OPEN INFO BLOCK command (not recommended) ..98
9.7.1 OPEN INFO BLOCK control command..98
9.7.2 OPEN INFO BLOCK status command ..100

9.8 READ INFO BLOCK command..103
9.8.1 READ INFO BLOCK control command ...103

9.9 WRITE INFO BLOCK command ..106
9.9.1 WRITE INFO BLOCK control command..106

9.10 SEARCH DESCRIPTOR command ..111
9.10.1 SEARCH DESCRIPTOR control command ..111
9.10.2 Type_specific_info for the search_in operand ...116
9.10.3 Type_specific_info for the start_point operand..120
9.10.4 Examples of the SEARCH DESCRIPTOR control command (Informative).....................123

9.11 OBJECT NUMBER SELECT command ...126
9.11.1 OBJECT NUMBER SELECT control command...126

TA Document 1999025, July 23, 2001 AV/C Descriptor Mechanism Specification Version 1.0

 Copyright  2001, 1394 Trade Association. All rights reserved. Page 5

9.11.2 OBJECT NUMBER SELECT status command...135
9.11.3 OBJECT NUMBER SELECT notify command ..136

Annex A: Anatomy of AV/C descriptor (informative)..137

AV/C Descriptor Mechanism Specification Version 1.0 TA Document 1999025, July 23, 2001

Page 6 Copyright  2001, 1394 Trade Association. All rights reserved.

List of Figures

Figure 5.1 – MSB/LSB and msb/lsb positions...19
Figure 5.2 – Example of a variable length field...19
Figure 5.3 – Example command frame..20
Figure 5.4 – Descriptor fields example..21
Figure 5.5 – General data structure example ...21
Figure 6.1 – Descriptor mechanism high-level view ...23
Figure 6.2 – AV/C descriptor hierarchy ..26
Figure 6.3 – List descriptor with multiple parents ...27
Figure 6.4 – List and entry descriptors describing an object group with objects...31
Figure 7.1 – Unit Identifier Descriptor ..32
Figure 7.2 – unit_information fields ..34
Figure 7.3 – Subunit Identifier Descriptor...35
Figure 7.4 – General List Descriptor ...38
Figure 7.5 – General entry descriptor ..41
Figure 7.6 – Specific information fields with non info block data ..44
Figure 7.7 – Specific information fields with info blocks only ...44
Figure 7.8 – Specific information fields with both ..44
Figure 7.9 – Information blocks within (sub)unit identifier, list and entry descriptors46
Figure 7.10 – General information block...47
Figure 8.1 – General descriptor specifier...50
Figure 8.2 – Descriptor_specifier for a (sub)unit identifier descriptor ..51
Figure 8.3 – Descriptor_specifier for a list descriptor specified by list ID..52
Figure 8.4 – Descriptor_specifier for a list descriptor specified by list_type ..52
Figure 8.5 – Descriptor_specifier for referencing an entry’s position ...52
Figure 8.6 – Descriptor_specifier for an object_ID reference ...53
Figure 8.7 – Descriptor_specifier for an entry specified by entry_type...53
Figure 8.8 – Descriptor_specifier for an entry specified by object_ID only..54
Figure 8.9 – Referencing info blocks...55
Figure 8.10 – Info_block_reference_path structure...56
Figure 8.11 – Info_block_specifier for an info block specified by its type and instance count.....................57
Figure 8.12 – Descriptor_specifier for an info block, specified by its position ...57
Figure 8.13 – Example info_block_reference_path structure ..57
Figure 8.14 – Example info_block_reference_path structure ..58
Figure 9.1 – AV/C Descriptor Structure ..60
Figure 9.2 – relation between OPEN DESCRIPTOR and READ/WRITE INFO BLOCK...........................61
Figure 9.3 – CREATE DESCRIPTOR control command frame...67
Figure 9.4 – Subfunction_1_specification for subfunction_1 = 0016 ...68
Figure 9.5 – Subfunction_1_specification for subfunction_1 = 0116 ...68
Figure 9.6 – A new root list created by the CREATE DESCRIPTOR control command71
Figure 9.7 – A new entry without a child list created by CREATE DESCRIPTOR control command73
Figure 9.8 – A new entry with a child list created by CREATE DESCRIPTOR control command..............74
Figure 9.9 – A new list created by CREATE DESCRIPTOR control command ..75
Figure 9.10 – OPEN DESCRIPTOR control command frame..76
Figure 9.11 – OPEN DESCRIPTOR status command frame ..78
Figure 9.12 – OPEN DESCRIPTOR notify command frame..81
Figure 9.13 – READ DESCRIPTOR control command frame ...83
Figure 9.14 – WRITE DESCRIPTOR control command frame..86
Figure 9.15 – WRITE DESCRIPTOR control command frame, subfunction = partial_replace (5016)91
Figure 9.16 – WRITE DESCRIPTOR status command frame ..96
Figure 9.17 – OPEN INFO BLOCK control command frame...98
Figure 9.18 – OPEN INFO BLOCK status command frame...100
Figure 9.19 – READ INFO BLOCK control command frame ..103

TA Document 1999025, July 23, 2001 AV/C Descriptor Mechanism Specification Version 1.0

 Copyright  2001, 1394 Trade Association. All rights reserved. Page 7

Figure 9.20 – WRITE INFO BLOCK control command frame ..106
Figure 9.21 – SEARCH DESCRIPTOR control command frame ..111
Figure 9.22 – Search_for operand of SEARCH DESCRIPTOR control command111
Figure 9.23 – Search_in operand of SEARCH DESCRIPTOR control command......................................112
Figure 9.24 – Start_point operand of SEARCH DESCRIPTOR control command....................................113
Figure 9.25 – Entry_descriptor_specifier ..116
Figure 9.26 – List_descriptor_specifier...117
Figure 9.27 – Type_specific_info for the search_in operand, type 1016..118
Figure 9.28 – Type_specific_info for the search_in operand, type 2016..118
Figure 9.29 – Type_specific_info for the search_in operand, type 3016..118
Figure 9.30 – Type_specific_info for the search_in operand, type 5016..118
Figure 9.31 – Type_specific_info for the search_in operand, type 5216..119
Figure 9.32 – Type_specific_info for the search_in operand, type 6016..119
Figure 9.33 – Type_specific_info for the search_in operand, type 6216..119
Figure 9.34 – Type_specific_info for the search_in operand, type 6416..119
Figure 9.35 – Type_specific_info for the search_in operand, type 6616..120
Figure 9.36 – Type_specific_info for the search_in operand, type 7016..120
Figure 9.37 – Type_specific_info for the start_point operand, type 0016 ..120
Figure 9.38 – Type_specific_info for the start_point operand, type 0216 ..121
Figure 9.39 – Type_specific_info for the start_point operand, type 0316 ..121
Figure 9.40 – Type_specific_info for the start_point operand, type 1016 ..121
Figure 9.41 – Type_specific_info for the start_point operand, type 1116 ..121
Figure 9.42 – Type_specific_info for the start_point operand, type 2016 ..121
Figure 9.43 – Type_specific_info for the start_point operand, type 2116 ..122
Figure 9.44 – Type_specific_info for the start_point operand, type 2216 ..122
Figure 9.45 – Type_specific_info for the start_point operand, type 2316 ..122
Figure 9.46 – Type_specific_info for the start_point operand, type 2416 ..122
Figure 9.47 – Type_specific_info for the start_point operand, type 2516 ..122
Figure 9.48 – Type_specific_info for the start_point operand, type 2616 ..123
Figure 9.49 – Type_specific_info for the start_point operand, type 2716 ..123
Figure 9.50 – Type_specific_info for the start_point operand, type 3016 ..123
Figure 9.51 – SEARCH DESCRIPTOR control command frame, example 1 ..124
Figure 9.52 – SEARCH DESCRIPTOR control command frame, example 2 ..124
Figure 9.53 – SEARCH DESCRIPTOR control command frame, example 3 ..125
Figure 9.54 – OBJECT NUMBER SELECT control command frame ...126
Figure 9.55 – General ons_selection_specification (full path specification)...128
Figure 9.56 – Format of the target field (full path specification) ..129
Figure 9.57 – ons_selection_specification (“don’t care” specification) ..130
Figure 9.58 – Target field (“don’t care” specification) when descriptor_specifier_type_flag = 0131
Figure 9.59 – Target field (“don’t care” specification) when descriptor_specifier_type_flag = 1131
Figure 9.60 – OBJECT NUMBER SELECT status command frame ...135
Figure 9.61 – OBJECT NUMBER SELECT status command: STABLE response frame135
Figure 9.62 – OBJECT NUMBER SELECT notify command frame ...136
Figure A.1 – Structure of list descriptor with entries and info blocks...138
Figure A.2 – Structure of info block ...139
Figure A.3 – Extended structure of the list descriptor and its entries with info blocks142
Figure A.4 – Extending block-aware structures ..144

AV/C Descriptor Mechanism Specification Version 1.0 TA Document 1999025, July 23, 2001

Page 8 Copyright  2001, 1394 Trade Association. All rights reserved.

List of Tables

Table 3.1 – Document Changes...14
Table 5.1 – Generic command-response table example ..20
Table 6.1 – General and unit and subunit-type specific descriptors ..24
Table 6.2 – Assignment ranges for the two list_type scopes ...28
Table 6.3 – Assignment ranges for the two entry_type scopes..28
Table 6.4 – Assignment ranges for the two info_block_type scopes...28
Table 6.5 – List ID value assignment ranges...29
Table 7.1 – Generation_ID values ...33
Table 7.2 – List descriptor attribute values..39
Table 7.3 – Entry descriptor attribute values ...42
Table 7.4 – General Descriptor’s Specific Information Fields ..43
Table 8.1 – Descriptor_specifier_type meanings...51
Table 8.2 – Advantages and disadvantages to using the various entry specifiers..54
Table 9.1 – Descriptor and info block commands ...59
Table 9.2 –Controller Read/Write attribute and target behaviors ..63
Table 9.3 – Descriptor access rule summary ...64
Table 9.4 – Fields maintained by target...65
Table 9.5 – Rules for reserved fields ...66
Table 9.6 – Rules for reserved values..66
Table 9.7 – Subfunction_1 field in command frame ...68
Table 9.8 – Field values in the CREATE DESCRIPTOR control command: REJECTED, INTERIM and

ACCEPTED response frames for subfunction_1 = 0016..69
Table 9.9 – Field values in the CREATE DESCRIPTOR control command: REJECTED, INTERIM and

ACCEPTED response frames for subfunction_1 = 0116..70
Table 9.10 – Descriptor specifier types for creating a new root list ..70
Table 9.11 – Specifier types for creating a child list from and existing entry ...72
Table 9.12 – Descriptor specifier types for creating an entry descriptor in an existing list72
Table 9.13 – Descriptor specifier types for creating a new entry and its child list ..74
Table 9.14 – Values of the subfunction operand ...76
Table 9.15 – Field values in the OPEN DESCRIPTOR control command: REJECTED, INTERIM and

ACCEPTED response frames..77
Table 9.16 – Field values in the OPEN DESCRIPTOR status command: REJECTED, IN TRANSITION

and STABLE response frames...79
Table 9.17 – status field values in the OPEN DESCRIPTOR status command: STABLE response frame ..79
Table 9.18 – node_ID values in the response frame ..80
Table 9.19 – Field values in the OPEN DESCRIPTOR notify command: REJECTED, INTERIM and

CHANGED response frames ...82
Table 9.20 – Field values in the READ DESCRIPTOR control command: REJECTED, INTERIM and

ACCEPTED response frames..84
Table 9.21 – read_result_status field values in the ACCEPTED response frame ...85
Table 9.22 – Values for the subfunction operand ..88
Table 9.23 – Group_tag values..90
Table 9.24 – Field values in the WRITE DESCRIPTOR control command: REJECTED, INTERIM and

ACCEPTED response frames..93
Table 9.25 – Field values in the WRITE DESCRIPTOR control command: REJECTED, INTERIM and

ACCEPTED response frames..93
Table 9.26 – subfunction in the response frame ...94
Table 9.27 – Field values in the WRITE DESCRIPTOR status command: REJECTED, IN TRANSITION

and STABLE response frames...97
Table 9.28 – Values of the subfunction operand ...99
Table 9.29 – Field values in the OPEN INFO BLOCK control command: REJECTED, INTERIM and

ACCEPTED response frames..99

TA Document 1999025, July 23, 2001 AV/C Descriptor Mechanism Specification Version 1.0

 Copyright  2001, 1394 Trade Association. All rights reserved. Page 9

Table 9.30 – Field values in the OPEN INFO BLOCK status command: REJECTED, IN TRANSITION
and STABLE response frames ..101

Table 9.31 – status in the OPEN INFO BLOCK status command: STABLE response frame....................101
Table 9.32 – Value of node_ID based on status ..101
Table 9.33 – Field values in the READ INFO BLOCK control command: REJECTED, INTERIM and

ACCEPTED response frames..104
Table 9.34 – read_result_status field values in the ACCEPTED response frame105
Table 9.35 – Group_tag values..107
Table 9.36 – Information block basic structure ...108
Table 9.37 – Field values in the WRITE INFO BLOCK control command: REJECTED, INTERIM and

ACCEPTED response frames..109
Table 9.38 – subfunction in the response frame..110
Table 9.39 – Type value for search_in ..112
Table 9.40 – Type values for start_point...114
Table 9.41 – Direction operand meanings...115
Table 9.42 – Order of searching rules ...115
Table 9.43 – Response_format operand ..116
Table 9.44 – Relationship between type and type_specific fields ...117
Table 9.45 – Relationship between type and type_specific fields ...117
Table 9.46 – AV/C Subunit Plug Address...127
Table 9.47 – Subfunctions for the general AV/C model ...127
Table 9.48 – Selection_indicator field encoding ...129
Table 9.49 – Selection_indicator for the “don’t care” specification..130
Table 9.50 – Field values in the OBJECT NUMBER SELECT control command: REJECTED, INTERIM

and ACCEPTED response frames...132
Table 9.51 – STATUS value in ACCEPTED response frame ..132
Table 9.52 – Field values in the OBJECT NUMBER SELECT status command: REJECTED, IN

TRANSITION and STABLE response frames..136

AV/C Descriptor Mechanism Specification Version 1.0 TA Document 1999025, July 23, 2001

Page 10 Copyright  2001, 1394 Trade Association. All rights reserved.

This page is left intentionally blank

TA Document 1999025, July 23, 2001 AV/C Descriptor Mechanism Specification Version 1.0

 Copyright  2001, 1394 Trade Association. All rights reserved. Page 11

1. Overview

1.1 Purpose

This document specifies a command set used to create, read, write, select and delete information from
descriptor and info block data structures between consumer electronic audio/video equipment. The
descriptor and info block mechanism is used to share information in a standard way between AV/C devices.

This mechanism limits the media- and subunit-type specific knowledge required for performing media
discovery and access. AV/C devices are not required to implement descriptor and info block data
structures. Whether a subunit uses the descriptor mechanism is determined by its subunit specification.

1.2 Scope

This specification concerns itself narrowly with AV/C descriptor and info block structures and the syntax
and semantics of a general set of commands to allow external controllers create, read, write, select and
delete information from these structures. This document is intended to clarify and augment the descriptor
and info block mechanism that was presented in the previous AV/C Digital Interface Command Set
General Specification version 3.0 [R7], and Enhancement to the AV/C General Specification 3.0 [R8]. It
provides a comprehensive look at descriptor and info block structures, and a full-featured command set for
their manipulation.

The suite of AV/C documentation has been separated into this AV/C General Descriptor Mechanism
specification and the AV/C General 4.0 specification [R9]. AV/C Information Block Type Specification
[R10] defines the types and formats of general info block structures.

AV/C Descriptor Mechanism Specification Version 1.0 TA Document 1999025, July 23, 2001

Page 12 Copyright  2001, 1394 Trade Association. All rights reserved.

2. References

The following standards contain provisions, which through reference in this document constitute provisions
of this standard. All the standards listed are normative references. Informative references are given in
Annex A.

2.1 Reference sources

All listed references are available at various web sites. Some web sites require membership to access the
references, and other sites require payment for each reference. The following sites contain the references
used in this document. The reader is encouraged to always consult these sites for information on the latest
versions of specifications mentioned here, as well as specifications that may be developed in the future.

[R1] 1394TA web site, http://www.1394TA.org. This web site is kept up to date with the latest released
and draft versions of AV/C specifications. You need to be a member to access specifications.

[R2] International Electro-technical Commission web site, http://www.iec.ch. This web site contains
specifications that must be purchased.

[R3] IEEE standards web site. http://standards.ieee.org. This web site contains specifications that must
be purchased.

2.2 Specifications

At the time of publication, the editions indicated were valid. All standards are subject to revision, and
parties to agreements based on this standard are encouraged to investigate the possibility of applying the
most recent editions of the standards indicated below.

[R4] IEEE Std 1394–1995, Standard for a High Performance Serial Bus, August 30 1996.

[R5] IEEE Std 1394a-2000, Standard for High Performance Serial Bus-Amendment 1

[R6] ISO/IEC 13213:1994, Control and Status Register (CSR) Architecture for Microcomputer Buses,
First Edition, October 5, 1994.

[R7] TA Document 1998003, AV/C Digital Interface Command Set General Specification, Version 3.0,
April 15, 1998.

[R8] TA Document 2000004, Enhancement to the AV/C General Specification Version 3.0, Version 1.1,
October 24, 2000.

[R9] TA Document 1999026, AV/C Digital Interface Command Set General Specification Version 4.0,
Draft.

[R10] TA Document 1999045, AV/C Information Block Types Specification Version 1.0 Draft.

http://www.1394ta.org/
http://www.iec.ch/
http://www.standards.ieee.org/

TA Document 1999025, July 23, 2001 AV/C Descriptor Mechanism Specification Version 1.0

 Copyright  2001, 1394 Trade Association. All rights reserved. Page 13

3. Changes from previous version

This document contains information that was originally in the AV/C Digital Interface Command Set
General Specification 3.0 [R7], and Enhancements to the AV/C General Specification 3.0 [R8]. These two
documents were merged, and much of the text was rewritten and examples provided to explain the
descriptor mechanism more clearly. Also, figures and tables were added to help elucidate the subject.

This section provides a cross-reference to the major changes that were made from the original document to
this document. As of this writing, the editor cannot guarantee that the cross-reference will be entirely
accurate and complete. A strong effort was made to reasonably reference all the changes that were made to
the document, but there were many minor editorial changes that the editor felt was not necessary to cross
reference. For example, changing “a” to “an” was considered unremarkable. The reader is encouraged to
reference the documentation in the areas where there is interest.

Please note that there are some minor architectural changes to the technology in this document. There were
also decisions made about the behavior and the meaning of some ambiguous features. These decisions may
or may not conflict with systems that are already in production that used the previous documents as a
baseline.

As an overview, the following updates were made:

1. Descriptor field name changes include:

Old Descriptor Field Name New Descriptor Field Name

descriptor_length subunit_identifier_descriptor_length
list_descriptor_length
entry_descriptor_length

size_of_object_position size_of_entry_position

number_of_root_object_lists number_of_root_lists

subunit_dependent_length subunit_dependent_information_length

manufacturer_dependent_length manufacturer_dependent_information_length

size_of_list_specific_information list_specific_information_length

number_of_entries number_of_entry_descriptors

object_entry entry_descriptor

size_of_entry_specific_information entry_specific_information_length

2. Other name changes:

Old Name New Name

Object List Descriptor List Descriptor

Object Entry Descriptor Entry Descriptor

descriptor_identifier descriptor_specifier

The following table shows the changes other than name changes above. For further inquiries, please refer to
the document itself.

AV/C Descriptor Mechanism Specification Version 1.0 TA Document 1999025, July 23, 2001

Page 14 Copyright  2001, 1394 Trade Association. All rights reserved.

Table 3.1 – Document Changes

Category Description

Editorial The new AVWG Template was added to the document.

Editorial Drawings were added in various places to clarify document content.

Editorial The glossary of terms was revamped.

Editorial The section on command-frame figures was copied from AV/C General 4.0.

Technical Unit Identifier Descriptor was added.

Editorial Information Block information was merged from the enhancements document.

Technical Primary fields in information blocks may contain mandatory info blocks.

Editorial A specific chapter was added explaining data structure conventions in the document.

Editorial Root, parent, child descriptors were clarified.

Editorial Multiple parent descriptors were described.

Editorial All ways for identifying descriptors were put under “Descriptor identification” heading.

Editorial Sections were added explaining how to assign and use list_IDs and object_IDs.

Editorial Extended information fields were added to each descriptor.

Editorial Descriptor fields were assigned a specific length and read/write property.

Technical Descriptor attributes fields were carefully and more clearly defined. The
has_more_attributes bit was deprecated. The skip and up_to_date bits were re-
defined.

Editorial The section of Descriptor_specifier was removed from the OPEN DESCRIPTOR
command area, and combined with info_block_reference_path.

Editorial Separate attribute tables were made for list and entry descriptors.

Editorial A separate chapter was made to describe how to reference descriptors and info
blocks in descriptor and info block commands.

Editorial The descriptor_specifier for an entry specified only by object_ID was included.

Editorial The descriptor_specifier for creating an entry was included.

Editorial Information about how to use the different descriptor_specifiers was provided.

Editorial Created a descriptor access rule summary table.

Editorial Described legacy device behavior when devices send descriptor commands with
reserved fields and values.

Editorial Provided examples of newly-created descriptor structures created by the CREATE
DESCRIPTOR command.

Technical Deprecated List-only status from the OPEN DESCRIPTOR status command.

Editorial/
Technical

WRITE DESCRIPTOR command subfunctions were more clearly defined and either
recommended or not recommended for usage.

TA Document 1999025, July 23, 2001 AV/C Descriptor Mechanism Specification Version 1.0

 Copyright  2001, 1394 Trade Association. All rights reserved. Page 15

Category Description

Editorial/
Technical

Access rules were rewritten to include info blocks and were separated as follows:

– Access rules for opening descriptors and info blocks

– Access rules for writing descripors and info blocks

– Access for closing descriptors and info blocks

– Reset Rule

– Timeout Rules

Technical Controller Read/Write is introduced into descriptor structures and the access rules
for Controller Read/Write are defined.

Technical The WRITE DESCRIPTOR command with a descriptor specifier for a list can not
write an area of descriptor entries of the list.

Technical Clarify how to create and write an info block using WRITE DESCRIPTOR.

Editorial Subunit Requirements were enumerated for subunits that want to support the
descriptor and info block mechanism.

Editorial All commands were given a command-response table describing fields in the
response frame.

Editorial Specific examples were given on how to use the CREATE DESCRIPTOR, READ
DESCRIPTOR, and WRITE DESCRIPTOR commands.

Technical The CREATE DESCRIPTOR command now returns the object_position of a newly
created entry in the response frame. It also returns the list_ID of a newly created list
in the response frame.

Technical A study of deleting descriptors was made, and rules were determined about how to
do this in a descriptor hierarchy using the WRITE DESCRIPTOR command.

Technical Two new subfunction values in the response of WRITE DESCRIPTOR and WRITE
INFO BLOCK are defined.

Editorial Provided examples of using the WRITE DESCRIPTOR command.

Editorial The SEARCH DESCRIPTOR command was largely untouched. Just some minor
editorial changes were made.

Editorial The OBJECT NUMBER SELECT command had only some editorial clarifications.

Editorial Added an anatomy of AV/C descriptor in Annex A.

AV/C Descriptor Mechanism Specification Version 1.0 TA Document 1999025, July 23, 2001

Page 16 Copyright  2001, 1394 Trade Association. All rights reserved.

4. Definitions

4.1 Conformance levels

4.1.1 expected: A key word used to describe the behavior of the hardware or software in the design models
assumed by this Specification. Other hardware and software design models may also be implemented.

4.1.2 may: A key word that indicates flexibility of choice with no implied preference.

4.1.3 shall: A key word indicating a mandatory requirement. Designers are required to implement all such
mandatory requirements.

4.1.4 should: A key word indicating flexibility of choice with a strongly preferred alternative. Equivalent
to the phrase is recommended.

4.1.5 reserved fields: A set of bits within a data structure that are defined in this specification as reserved,
and are not otherwise used. Implementations of this specification shall zero these fields. Future revisions of
this specification, however, may define their usage.

4.1.6 reserved values: A set of values for a field that are defined in this specification as reserved, and are
not otherwise used. Implementations of this specification shall not generate these values for the field.
Future revisions of this specification, however, may define their usage.

NOTE — The IEEE is investigating whether the “may, shall, should” and possibly “expected” terms will be formally
defined by IEEE. If and when this occurs, draft editors should obtain their conformance definitions from the latest
IEEE style document.

4.2 Glossary of terms

4.2.1 Asynchronous: asyn “any”– chronous – “time”. Asynchronous is an adjective used to describe data
transfers are not sent at fixed time intervals. Asynchronous transfers are usually used for time in-sensitive
data such as CONTROL commands.

4.2.2 AV/C: Audio/video control. The AV/C Digital Interface Command Set of which a part is specified by
this document.

4.2.3 AV/C subunit: A part of an AV/C unit that is uniquely defined and offers a subset of functions that
belong to the unit.

4.2.4 AV/C unit: An electronic device that deals with Audio and/or Video data, e.g., a camcorder or a
VCR, attached as a Serial Bus node.

4.2.5 Byte: Eight bits of data.

4.2.6 Controller: A device at a serial bus node that sends AV/C commands to control a remote device.

4.2.7 CSR: A Control and Status Register within a node, as defined by IEEE Std 1394–1995.

4.2.8 Data structure: A grouping of data fields in a particular and recognizable format. Examples of data
structures are AV/C commands, descriptors, and info blocks.

TA Document 1999025, July 23, 2001 AV/C Descriptor Mechanism Specification Version 1.0

 Copyright  2001, 1394 Trade Association. All rights reserved. Page 17

4.2.9 AV/C Descriptor: A data structure with defined fields used for sharing information with and/or
modifying information by other AV/C devices. Descriptors have a set of commands for manipulation of
their contents.

4.2.10 Entry descriptor: A data structure that describes a set of information. A list descriptor generally
contains a series of entry descriptors.

4.2.11 EUI-64: Extended Unique Identifier, 64-bits, as defined by the IEEE. The EUI-64 is a concatenation
of the 24-bit company_ID obtained from the IEEE Registration Authority Committee (RAC) and a 40-bit
number (typically a silicon serial number) that the vendor identified by company_ID guarantees to be
unique for all of its products. The EUI-64 is also known as the node unique ID and is redundantly present
in a node’s configuration ROM in both the Bus_Info_Block and the Node_Unique_ID leaf.

4.2.12 Info block: An information block is a data structure embedded within a descriptor that describes a
common type of AV/C data.

4.2.13 Isochronous: iso – “same” chronous – “time”. Isochronous is an adjective used to describe data
transfers that occur at regular intervals. Isochronous transfers are used for time sensitive data such as audio
and video.

4.2.14 List descriptor: A list descriptor is a type of descriptor that contains a series of entry descriptors.

4.2.15 Nibble: Four bits of data. A byte is composed of two nibbles.

4.2.16 Node: An addressable device attached to Serial Bus with at least the minimum set of control
registers defined by IEEE Std 1394–1995 [R4].

4.2.17 Node ID: A 16-bit number, unique within the context of an interconnected group of Serial Buses,
and is defined in IEEE 1394-1995 [R4]. The node ID is used to identify both the source and destination of
Serial Bus asynchronous data packets. It can identify one single device within the addressable group of
Serial Buses (unicast), or it can identify all devices (broadcast).

4.2.18 Quadlet: Four bytes of data.

4.2.19 Serial Bus: The hardware interconnects and software protocols for the peer-to-peer transport of
serialized data, as defined by IEEE Std 1394–1995 [R4] .

4.2.20 Target: A unit or one of its subunits at a serial bus node that receives and responds to AV/C
commands from a remote controller device.

4.3 Acronyms and abbreviations

FCP: Function Control Protocol as defined by IEC 61883

IEEE: Institute of Electrical and Electronics Engineers, Inc.

lsb least significant bit

LSB Least Significant Byte

msb most significant bit

MSB Most Significant Byte

ONS Object Number Select

SID Subunit Identifier Descriptor

AV/C Descriptor Mechanism Specification Version 1.0 TA Document 1999025, July 23, 2001

Page 18 Copyright  2001, 1394 Trade Association. All rights reserved.

UID Unit Identifier Descriptor

TA Document 1999025, July 23, 2001 AV/C Descriptor Mechanism Specification Version 1.0

 Copyright  2001, 1394 Trade Association. All rights reserved. Page 19

5. Data structure conventions

The following information explains the conventions used in this specification for presenting information in
tables and figures.

5.1 Endian-ness

Structures and command frames are always defined with the most significant byte (MSB) of multi-byte
fields at the lowest address offset or operand (by number) in the structure or command frame. The most
significant bit (msb) of a field is at the highest bit position. For example:

address
offset msb lsb

0016 (MSB)
0116
0216 (LSB)

Figure 5.1 – MSB/LSB and msb/lsb positions

5.2 Command frame figures

Command frame figures in this specification contain a column for each of opcode/operands, field length, ck
validation of fields, and the field name or value.

Field length may have a fixed and/or variable number of bytes. A column for field length denotes the length
of the field in bytes.

The length of some fields may be determined by a preceding field or a formula. In the figure below, the
length is transferred from the field_C_length field as i to the length column for field_C.

 length ck msb lsb
operand[x] 2 √ field_A

:
: 1 √ field_B
: 2 – field_C_length = i
:
: i √ field_C
:

Figure 5.2 – Example of a variable length field

Variable length fields are denoted by a “seex ”if a length field does not precede the field. The lengths of
these fields are determined by some other means and are described in the footnote.

The following command frame example illustrates these concepts:

AV/C Descriptor Mechanism Specification Version 1.0 TA Document 1999025, July 23, 2001

Page 20 Copyright  2001, 1394 Trade Association. All rights reserved.

 length ck msb lsb
opcode 1 √ COMMAND OPCODE (XX16)

operand[0] 1 √ field A
operand[1] 2 √ field B
operand[2]
operand[3] see1 – field C

:
: 1 – field D

1 The length of this field is described here.

Figure 5.3 – Example command frame

NOTE — The opcode/operand column on the far left is used to map the fields to the opcode and operands of the
command frame. When a field has a variable length, this mapping can no longer be determined, and colons “:” are used
for all remaining operands.

Command frames shall specify the ck (check) column. A check “√” in this column indicates a field that
should be validated to return a response of NOT_IMPLEMENTED. A dash “–” in this column indicates a
field that does not need the validation. For more information on error checking levels, see reference [R9].

It is recommended that other subunit-type specifications include the ck column for their commands.

5.3 Command-response tables

Command-response tables in this specification contain a column for fields in the command frame, a column
for their values or description of their values, and unless otherwise indicated, a column for each response
type except NOT IMPLEMENTED.

Table 5.1 – Generic command-response table example

Fields Command Response

 REJECTED INTERIM ACCEPTED

field 1 FF16 FF16 FF16 0016

field 2 0016 ← ← ←

field 3 Explanation of the values for field
3

← ← ←

The arrow “←” for the fields in the response frame indicate that the value is identical to that of the
command frame.

5.4 Descriptor field qualifiers

Descriptor and info block fields contain field qualifiers in columns two and three as shown below:

TA Document 1999025, July 23, 2001 AV/C Descriptor Mechanism Specification Version 1.0

 Copyright  2001, 1394 Trade Association. All rights reserved. Page 21

Address

Le
ng

th
,

by
te

s

C
on

tr
ol

le
r

R
ea

d/
W

rit
e

Contents

00 0016 2 R field A
00 0116
00 0216 1 R/W/I field B
00 0316 1 R/W field C
00 0416 1 R field_D_length = i
00 0516

: i – field D…
:

Figure 5.4 – Descriptor fields example

These qualifiers help the reader understand more about each descriptor field, and should be used in unit and
subunit-type specifications. They are defined below.

Length, bytes: Each field in a descriptor structure has a fixed or variable length, which is indicated in the
Length, bytes column of the descriptor. The way it is denoted is identical to how it is denoted for
commands shown in section 5.2.

Controller Read/Write: Each field in a descriptor can either be read/write(R/W), read/write/ignore(R/W/I)
read/ignore(R/I), or read(R) by an external controller. This qualifier indicates whether the field can be
written using WRITE DESCRIPTOR and WRITE INFO BLOCK commands with the partial_replace
subfunction. No field shall be write only. For more information, see cause 9.2.2.2.

NOTE — A dash “–” in this column indicates that Controller Read/Write attribute is not defined in the figure.

5.5 General data structures

The following is an example of a general data structure that is used throughout this document, and is used
to describe data that is contained within descriptor structures and command frames.

Address

Le
ng

th
,

by
te

s

Contents

00 0016 2 field A
00 0116
00 0216 1 field B
00 0316 1 field C
00 0416 1 field_D_length = i
00 0516

: i field D…
:

Figure 5.5 – General data structure example

AV/C Descriptor Mechanism Specification Version 1.0 TA Document 1999025, July 23, 2001

Page 22 Copyright  2001, 1394 Trade Association. All rights reserved.

5.6 Naming convention in specifications (informative)
To make the specification easier to read and understand, the following guidelines are suggested for naming
fields in data structures:

1) Info block names should end with “_info_block” (example: name_info_block)

2) Fixed-definition field names can have any name, but should avoid using the term “_info_block” at
the end of the name.

3) Length fields, which precede fixed named fields, are named “xxxx_length.”

4) An AV/C command with ctype=XXXX is denoted by “a XXXX command”. For example, “a
CONTROL command”.

5) AV/C command names are placed in UPPERCASE. For example, “an OPEN DESCRIPTOR
command” or “an OPEN DESCRIPTOR control command” when ctype is explicitly specified.

6) An AV/C response with response=YYYY is denoted by “a YYYY response”. For example, “an
ACCEPTED response”.

5.7 User-modifiable text fields (informative)

Some implementations or technologies may place restrictions on the number of characters that can be
entered for a given field. Such restrictions might be due to storage or display limitations. Text fields may
also have an indicator of this maximum size.

Controllers may want to be aware of these limitations when letting users work with the text entries of
various subunit objects.

TA Document 1999025, July 23, 2001 AV/C Descriptor Mechanism Specification Version 1.0

 Copyright  2001, 1394 Trade Association. All rights reserved. Page 23

6. AV/C descriptor and info block mechanism

6.1 Overview

The descriptor and info block mechanism is a general way for AV/C devices to store and share information
across a 1394 network. This mechanism is implemented by AV/C devices, but it is not required for all
AV/C devices.

The AV/C descriptor and info block mechanism contains two types of structures for sharing data between
devices: the descriptor and the information block. These two structures are defined in detail below.

6.1.1 Descriptors

A descriptor is a structured data interface presented by a device that represents its features and/or other
descriptive information. Using this interface and the common data structures it defines, AV/C devices can
exchange information. The internal storage strategy used by a particular device is device dependent and
should not affect the final descriptor format. Data can be stored in any manner or location as required
internally.

When an external device wants to access and/or manipulate information in a target, it uses descriptor
commands to specify which descriptor it interfaces with. When a controller reads a descriptor, the target is
responsible for presenting the response in the format these structures define. The following figure shows
conceptually how the descriptor mechanism shares information.

Controller

data
--
--
--
--
--
--
--

data
--
--
--
--
--
--
--

data
--
--
--
--
--
--
--

Internal
Memory

TargetDescriptorsController reads, writes,
creates or deletes

descriptor data using
descriptor commands

Figure 6.1 – Descriptor mechanism high-level view

One example of a descriptor is the subunit identifier descriptor, which is a data structure containing various
pieces of information about a particular type of subunit. The format of the subunit identifier descriptor is
common among all subunit types. However, contents of the subunit identifier descriptor are unique to each
type of subunit. Most of the information in this structure does not change. However, depending on the type
of subunit and its particular data requirements, it is possible that some of the information may change from
time to time.

AV/C Descriptor Mechanism Specification Version 1.0 TA Document 1999025, July 23, 2001

Page 24 Copyright  2001, 1394 Trade Association. All rights reserved.

6.1.1.1 Descriptor types

There are two categories of descriptors: general descriptors and unit and subunit-type specific descriptors.
This document defines general descriptors. Unit or subunit-type specific documents may define subunit-
type specific descriptors to support functionality not available in general descriptors. There are three types
of general descriptors in a unit or subunit: entry descriptors (or entries), list descriptors (or lists), and the
(sub) unit identifier descriptor. A subunit can also contain its own specific descriptor type; however, this
type of descriptor is defined in each subunit-type specification. The descriptor types are defined in the
following table.

Table 6.1 – General and unit and subunit-type specific descriptors

Descriptor Category Descriptor Type Meaning

General Descriptors unit identifier
descriptor

If the descriptor mechanism is supported in a unit
implementation, regardless of its subunits’
implementations, this descriptor must exist. It
contains information about the unit’s descriptor
structures, information about the unit and its
manufacturer, and references to list descriptors at
the root level (if any).

 Subunit identifier
descriptor

This is the same as the unit identifier descriptor
except that it applies to a subunit.

 list descriptor This descriptor contains list information and entry
descriptors. When list descriptors are referenced
from the (sub)unit identifier descriptor, they are
termed root list descriptors. When referenced from
entry descriptors, they are termed child list
descriptors.

 Entry descriptor This descriptor is an addressable set of information
in a list. It can also contain references to other list
descriptors for presenting data in a hierarchical
manner.

Subunit-type Specific
descriptors

subunit-type
specific descriptor

Subunit-type specific descriptors are not defined in
this specification. Please refer to the subunit-type
specific documentation for more information.

These descriptors can be combined in such a way as to produce a hierarchy of information called a
descriptor hierarchy. This concept is shown in Figure 6.2 – AV/C descriptor on page 26.

6.1.2 Information blocks

Information blocks (or info blocks) are extensible data structures that exist inside of descriptors. Unique
info-block data structures are given unique type values. Their structures can be applied to a broad range of
subunit types.

Information blocks can be placed end-to-end within a descriptor’s information field, or they can be nested.
When they are nested, the result is a hierarchical representation of data. Note that they are NOT
hierarchical in the same way that descriptors are hierarchical. For more information on the info block
hierarchy see section 8.3 “Information block reference path” on page 55.

Whether they are nested or not, they can be easily parsed by a controller, even if the controller does not
know the types of info blocks it encounters. In some units or subunits, the placement of information blocks
within the information field is important, while in others it is not. A unit or subunit specification will
specify if the information blocks it supports must be in a particular order or not. For more information on
info blocks, see section 7.6 “Information blocks” on page 45.

TA Document 1999025, July 23, 2001 AV/C Descriptor Mechanism Specification Version 1.0

 Copyright  2001, 1394 Trade Association. All rights reserved. Page 25

6.2 Hierarchies using general descriptor types

The general descriptor types shown in the table above can be combined to produce a descriptor hierarchy
that is most useful when representing unit or subunit information that is or can be categorized
hierarchically.

6.2.1 Root l ist descriptor

A root list descriptor is the term for a list descriptor that is at the top of a descriptor hierarchy, and appears
one level below the (sub)unit identifier descriptor. The root list is accessible by its root_list_ID found
within the (sub)unit identifier descriptor. A (sub)unit identifier descriptor can contain more than one
root_list_ID, and thus multiple hierarchies can exist in a unit or subunit.

Though it appears that the (sub)unit identifier descriptor is the root in the diagrams below, AV/C
convention stipulates that this descriptor actually references multiple roots.

When traversing away from the root, we say that we are moving down in the descriptor hierarchy.
Conversely, when moving toward the root, we are moving up in the descriptor hierarchy. There is only one
root for the descriptor hierarchy.

6.2.2 Parent and child descriptors

When an entry descriptor has a child list, the entry is considered a parent of the child list, and its list is also
considered the parent of the child list. A list descriptor without child lists exists at the bottom of a hierarchy
and is termed a leaf list descriptor. Depending on which way it is approached, a list descriptor between root
and leaf descriptors can be considered a parent or a child.

The parent – child relationship does not exist between lists and their entries or info blocks. Lists simply
contain entries, and list or entries contain info blocks.

All unit and subunit types can use list descriptors, entry descriptors, and info block structures defined in
this document, but would differ in the contents of their list-specific and entry-specific information. The
difference is reflected in each descriptor and info block type value.

The following diagram illustrates the general relationship between the kinds of descriptors, and how they
form a hierarchy:

AV/C Descriptor Mechanism Specification Version 1.0 TA Document 1999025, July 23, 2001

Page 26 Copyright  2001, 1394 Trade Association. All rights reserved.

descriptor info
number of root

list IDs
root list ID 1

...
subunit info

manufacturer info

descriptor info
list info

number of entries

...

descriptor info
child list ID

descriptor info
child list ID
entry info

Subunit Identifier
Descriptor

Root List
Descriptors

List Descriptors
(Child of Entry in Root List)

entry info

descriptor info
list info

number of entries

...

descriptor info

descriptor info
entry info

entry info

descriptor info
list info

number of entries

...

descriptor info

descriptor info
entry info

entry info
Entry Descriptors

descriptor info
list info

number of entries

...

descriptor info
child list ID

descriptor info
child list ID
entry info

entry info

root list ID 2

descriptor info
list info

number of entries

...

descriptor info
child list ID

descriptor info
child list ID
entry info

entry info

descriptor info
list info

number of entries

...

descriptor info

descriptor info
entry info

entry info

descriptor info
list info

number of entries

...

descriptor info

descriptor info
entry info

entry info

...

Root of
Hierarchy 2

Root of
Hierarchy 1

Entry Descriptors
(Parents of List
Descriptors)

Info blocks not shown

Figure 6.2 – AV/C descriptor hierarchy

Entries shall not contain child_list_IDs that cyclically refer to their containing list or ascendants.

6.2.3 Multiple parents

It is possible for child list descriptors to have multiple parents. This is shown by the following figure.

TA Document 1999025, July 23, 2001 AV/C Descriptor Mechanism Specification Version 1.0

 Copyright  2001, 1394 Trade Association. All rights reserved. Page 27

Descriptor info
List information

Number of entries

...

Descriptor info
Child list ID

Descriptor info
Child list ID

Entry info

Entry info

Descriptor info
Child list ID

Entry info

Descriptor info
List information

Number of entries

...

Descriptor info

Descriptor info
Entry info

Entry info

Descriptor info
Entry info

Descriptor info
List information

Number of entries

...

Descriptor info
Child list ID

Descriptor info
Child list ID

Entry info

Entry info

Descriptor info
Child list ID

Entry info

Descriptor info
List information

Number of entries

...

Descriptor info
Child list ID

Entry info

Descriptor info
Child list ID

Entry info

Figure 6.3 – List descriptor with multiple parents

In the figure above, the right-most list descriptor contains two parents. This is possible if the parent entry
descriptors contain identical child_list_ID values. If a child list descriptor with multiple parents is deleted,
the unit or subunit shall ensure that all parent entry descriptors shall have their child_list_ID field removed.

6.3 Descriptor identification

List descriptors are identified using descriptor_specifier structures by their type or by their ID. Entry
descriptors are identified by their type, ID, or position in their list. A unit or subunit may have multiple list
or entry descriptors of a particular type. However, each list descriptor must have a unique ID within the
scope of a unit or within the scope of a subunit. Note that if a unit contains descriptors, it does not preclude
subunits from containing descriptors with same IDs as those in the unit. The ID of an entry is optional.
When entries have IDs, each entry descriptor must have a unique ID within the scope of its list.

A descriptor’s type is determined by opening it and reading its list_type or entry_type field. A list
descriptor’s list ID is determined from its parent’s root_list_ID or child_list_ID field. An entry’s ID can be
determined by its object_ID field, when it is included. An entry’s position is determined by counting
through the entries in a list.

6.3.1 List, entry, and info block type f ields

Lists, entries, and info blocks contain a type field that identifies the structure and existence of the fields in
their data structures. By reading an entry type, a controller can interpret the data in a descriptor or info
block if it knows its type.

AV/C Descriptor Mechanism Specification Version 1.0 TA Document 1999025, July 23, 2001

Page 28 Copyright  2001, 1394 Trade Association. All rights reserved.

When these data structures are defined with a type value, their fields shall be defined in detail as to their
existence and/or format.

These type fields have values that exist within two possible scopes: there are types that are general to all
units and subunits, and types that are unit or subunit-type specific.

The following table shows the list_type assignment ranges and their scope:

Table 6.2 – Assignment ranges for the two list_type scopes

Range Scope of list_type

0016 – 7F16 General

8016 – FF16 Unit or subunit-type specific

Because the list_type definitions within the unit or subunit-type specific range are unique to a unit or a
given type of subunit (the combination of subunit_type and list_type are unique), different subunit types
and their unit may define list types with the same value in this range.

The scope for entry descriptors is defined in the same manner as list descriptors. The following table
shows the entry_type assignment ranges and their scope:

Table 6.3 – Assignment ranges for the two entry_type scopes

Range Scope of entry_type

0016 – 7F16 General

8016 – FF16 Unit or subunit-type specific

Entry_type values that are unit or subunit-type specific may contain overlap. That is, it is possible that two
different unit or subunit-types may have the same entry_type values for different types of descriptors.
Descriptor types in the unit or subunit-type specific range and the structure of their particular information
fields are defined in unit and subunit-type specifications.

The scope for info blocks are also defined in the same manner as descriptors, except that the range is much
broader. There are a range for General, and a range for unit or subunit-type specific according to the
following table:

Table 6.4 – Assignment ranges for the two info_block_type scopes

Range Scope of info_block_type

00 0016 – 7F FF16 General

80 0016 – FF FF16 Unit or subunit-type specific

An entry descriptor may contain multiple info blocks of different types. Likewise, a list descriptor may
contain multiple entries and/or info blocks of different types.

In the unit or subunit-type specific range, info blocks shall not contain overlapping values between unit and
subunit-types.

NOTE — list_types and entry_types may contain overlapping values. However, info_block_type shall not contain
overlapping values.

TA Document 1999025, July 23, 2001 AV/C Descriptor Mechanism Specification Version 1.0

 Copyright  2001, 1394 Trade Association. All rights reserved. Page 29

When new info_block_type values are assigned for (sub)unit-type specific info_block_types, the reservation of their
range is required in reference [R10]. See that specification for more information.

It is permitted to define info_block_types with the same meaning in other (sub)units.

See references [R10] for information about general list_types, entry_types and info_block_types that can
exist in all units and subunits.

6.3.2 List ID values

A unique list ID, which is assigned by the unit or subunit, identifies each list descriptor within the unit or
subunit. The size of this ID is specified in the (sub)unit identifier descriptor in the size_of_list_ID field. List
IDs appear in the (sub)unit identifier descriptor as root_list_ID, and in entry descriptors as child_list_ID.
The following table specifies the list ID value range assignments:

Table 6.5 – List ID value assignment ranges

Range List Definition

000016 - 0FFF16 Reserved

100016 - 3FFF16 Unit or subunit-type dependent

400016 - FFFF16 Reserved

1 000016 - max list ID value Unit or subunit-type dependent

The size of the maximum list ID value is determined by the (sub)unit identifier descriptor’s size_of_list_ID
field.

The list ID of a list descriptor shall stay constant during the life of the list.

Note that there are no list ID values that fall into a general range.

6.3.2.1 Assigning l ist IDs (informative)

Some unit and subunit-types may create and destroy list descriptors throughout their product life cycle. In
the case where a new list is created, it is unit or subunit-type dependent whether the new list shall use a new
list ID value, or a previously used list ID value.

1) If an entirely new list is created, it is recommended to use a new list ID value. This ensures that
controllers know that it is a new list. If a target has created more lists than are possible within the
constraints given by the size_of_list_ID value in the (sub)unit identifier descriptor, then it may
reuse any available list ID of previously deleted lists.

2) The same list ID as one in a previously deleted list may be used if the new list should be
recognized by controllers to be that same list.

There may be other conditions or reasons for using a new list ID, or for reusing a previous list ID. Either
way, one should consider the effects on controllers. Refer to the unit or subunit-type specification regarding
how to assign specific list IDs.

6.3.3 Object_IDs

Entries may have an object_ID, which facilitate in searching for and accessing the entry descriptor. It is up
to the unit or subunit-type specification to define object_IDs for a particular implementation. Object_IDs

AV/C Descriptor Mechanism Specification Version 1.0 TA Document 1999025, July 23, 2001

Page 30 Copyright  2001, 1394 Trade Association. All rights reserved.

can be assigned by an external controller, or internally by the unit or subunit. The unit or subunit is
responsible for ensuring that the setting of object_ID accords with the following rules:

1) object_ID values must be unique within their list.

2) A particular type of unit or subunit may define additional conditions on object_ID uniqueness. For
example, a subunit may want to have unique entries within a group of lists one level below the
root list. For details, please refer to the appropriate unit or subunit-type specification.

3) If a controller attempts to set an object_ID to a value that conflicts with an existing object_ID
within this scope, the unit or subunit shall return a REJECTED response to the operation.

4) If an object_ID assignment is accepted, then the unit or subunit shall not change it.

5) All entries within a unit or subunit shall have the same number of bytes for their ID values. The
number of bytes used to specify the object_ID is defined in the (sub)unit identifier descriptor’s
size_of_object_ID field.

When a unit or subunit assigns object_IDs, it can use various schemes, for example:

1) A unit or subunit can use a sequential or unused number.

2) A unit or subunit-type specification can specify a scheme for object_ID values that is patterned
after its data and which is understandable and duplicable by a controller. That is, a controller that
understands the scheme can re-construct the object_ID and access the entry immediately without
having to do any searches on the target.

3) In some lists, the object_ID’s value may be the same as the entry’s position, but this is not
guaranteed nor required by the architecture.

NOTE — If an object_ID is unique within the scope of a list, it is possible to specify two or more entries with the
same object_ID when using descriptor specifier type = 2116, causing an ambiguity. Depending on the unit or subunit-
type specification, this may or may not be desired. If an ambiguous specification is made within the
descriptor_specifier, the target shall return an arbitrary descriptor that matches the specifier. For more information on
the descriptor_specifier, see section 8.1, “Descriptor specifier” on page 50.

Please refer to the unit or subunit-type specification for more information on assigning object_IDs.

6.3.4 Identifying entries by posit ion

A unit or subunit-type specification may specify entries by their position in their list, and require controllers
to access them in such a way. A controller may need to know about how the unit or subunit orders its
entries to access them correctly.

6.4 Object and object group representations (informative)

Descriptors and info blocks describe objects and object groups. An object is an abstract term used to refer
to something in a unit or subunit that can be presented by a descriptor. For example, in a device, objects
could be files and object groups could be the directories that contain the files.

A list descriptor includes features that are shared by each entry it contains. For example, a disc subunit can
implement a list descriptor that contains information about its files. Each entry descriptor in the list,
therefore, represents a file. An info block within an entry could be used as a common interface to present
properties of that file.

TA Document 1999025, July 23, 2001 AV/C Descriptor Mechanism Specification Version 1.0

 Copyright  2001, 1394 Trade Association. All rights reserved. Page 31

List descriptors and entry descriptors can be used to create hierarchical data relationships. For a
hypothetical example, consider a device that contains two directories of files (See footnote 1). The volume
could be described as an object containing a group of directories. Each directory is considered an object
containing a group of file objects. The descriptors can be structured to support this hierarchical order, as
shown below.

Directory 1

File 1
File 2

...
File n

Directory 2

File 1
File 2

...
File n

Device

Descriptor head
Number of root list

IDs
Root list ID 1

...
Subunit info

Manufacturer info

Descriptor head
List information

Number of entries
Descriptor info

Child list ID

Descriptor info
Child list ID
Entry info

Entry info

Descriptor head
List information

Number of entries

...

Descriptor info

Descriptor info
Entry info

Entry info

Descriptor info
Entry info

Descriptor head
List information

Number of entries

...

Descriptor info

Descriptor info
Entry info

Entry info

Descriptor info
Entry info

Describes Volume

Describes Directory 1

Describes File 1

Describes File 2

Describes File 3

Describes Directory 2

Describes File 1

Describes File 2

Describes File 3

Subunit
Identifier

Descriptor

Root List
Descriptor

Other List
Descriptors

Note: The descriptor field names in this
figure are summarized and do not indicate
actual field names. Refer to the actual
descriptor fields further in this document for
more information.

Volume

Describes Device

Figure 6.4 – List and entry descriptors describing an object group with objects

The hierarchical model of lists and objects can be continued to any level as needed to correspond to the
way a device structures its data.

In this example, the information about directories can be located in the list_specific_information of a list or
the entry_specific_information of the list’s parent. A unit or subunit-type specification shall define where to
locate information at this level.

1 This hypothetical example is used to illustrate the hierarchical nature of the descriptor mechanism, and is not intended
to represent the architecture of the any subunit-type in any way.

AV/C Descriptor Mechanism Specification Version 1.0 TA Document 1999025, July 23, 2001

Page 32 Copyright  2001, 1394 Trade Association. All rights reserved.

7. General descriptor and info block data structures

7.1 Unit identifier descriptor

The unit identifier descriptor is the highest-level descriptor in a unit. The unit identifier descriptor is
required if the unit supports the descriptor mechanism at the unit level. The following figure shows the unit
identifier descriptor:

Address

Le
ng

th
,

by
te

s

C
on

tr
ol

le
r

R
ea

d/
W

rit
e

Contents

00 0016 2 R unit_identifier_descriptor_length
00 0116
00 0216 1 R generation_ID
00 0316 1 R size_of_list_ID = i
00 0416 1 R size_of_object_ID
00 0516 1 R size_of_entry_position
00 0616 2 R number_of_root_lists = n
00 0716
00 0816 i R root_list_id[0]

:
: :
: i R root_ list_id[n-1]
:
: 2 R unit_information_length = j
:
:
: j – 1 unit_information…
:
: 2 R manufacturer_dependent_information_length = k
:
:
: k – 2 manufacturer_dependent_information…
:
: – 1 extended_information (optional)…
:

1 depends on the unit specification.
2 depends on the how the vendor defines these fields.

Figure 7.1 – Unit Identifier Descriptor

7.1.1 Unit identif ier descriptor f ields

unit_identifier_descriptor_length: The unit_identifier_descriptor_length field contains the number of
bytes which follow in this descriptor structure. The value of this field does not include the length field
itself. The unit identifier descriptor has a maximum size of 64 kbytes.

generation_ID: The generation_ID field specifies which AV/C descriptor format is used by this unit for all
data structures it maintains, and the command sets that manipulate them. This field can have one of the
following values:

TA Document 1999025, July 23, 2001 AV/C Descriptor Mechanism Specification Version 1.0

 Copyright  2001, 1394 Trade Association. All rights reserved. Page 33

Table 7.1 – Generation_ID values

generation_ID Meaning

0016 Data structures and command sets as
specified in the AV/C General Specification,
version 3.0.

0116 Data structures and command sets as
specified in the AV/C General Specification,
version 3.0 and the Enhancement to the
AV/C General Specification 3.0, vrsion 1.0
and 1.1.

0216 Data structures and command sets as
defined in this specification.

all others Reserved for future specification.

size_of_list_ID: The size_of_list_ID field indicates the number of bytes used to specify a list ID field in
descriptors and commands. Note that list descriptors do not contain list IDs, instead they exist in their
parent descriptor as root_list_ID or child_list_ID. The value of this field shall not change. If this value is
016, then list descriptors are not supported by the unit.

size_of_object_ID: The size_of_object_ID field indicates the number of bytes used to indicate an
object_ID for this unit. All entries maintained within the unit that have an object_ID (some lists may
contain entries without object_ID fields) shall have this number of bytes for their ID. The value of this field
may change depending on the unit specification. If the unit does not use the object_ID field in entry
descriptors, the value of this field shall be 016.

size_of_entry_position: The size_of_entry_position field indicates the number of bytes used when
referring to an entry by its position in its list. All such references used within the unit shall have this
number of bytes for the position reference. The value of this field may change depending on the unit
specification. If this field is 0, then usage of descriptor_specifier 2016 in descriptor commands is not
supported.

number_of_root_lists: The number_of_root_lists field contains the number of root list descriptors in this
unit.

root_list_id[x]: The root_list_id[x] fields are the ID values for each of the root list descriptors in this unit.

unit_information_length: The unit_information_length field specifies the number of bytes in the
unit_information field.

AV/C Descriptor Mechanism Specification Version 1.0 TA Document 1999025, July 23, 2001

Page 34 Copyright  2001, 1394 Trade Association. All rights reserved.

unit_information: The unit_information field contains information whose format and contents will depend
on the unit this is describing. If there is no unit information in the descriptor, then the
unit_information_length field shall be zero and the unit_information field shall not exist. The following
structure shows how fields in the unit_information are organized.

Address
Offset

Le
ng

th
,

by
te

s

C
on

tr
ol

le
r

R
ea

d/
W

rit
e

Contents

00 0016 2 R general_unit_info_length = l
00 0116
00 0216
00 0316 l – 1 general_unit_info
00 0416
00 0516 – – 2 info_block_area
00 0616

1 to be defined by a future revision of this specification.
2 depends on other unit specifications.

Figure 7.2 – unit_information fields

general_unit_info_length: The general_unit_info_length field indicates the length of the
general_unit_info field. Currently, the value of this field shall be 000016.

general_unit_info: The general_unit_info field contains non-info block information, and may be
defined by a future revision of this specification.

info_block_area: The info_block_area field contains info blocks for describing unit dependent
information.

manufacturer_dependent_information_length: The manufacturer_dependent_information_length field
specifies the number of bytes in the manufacturer_dependent_information field.

manufacturer_dependent_information: The manufacturer_dependent_information field is used for
vendor-specific data. The format and contents are completely up to the manufacturer. If there is no
manufacturer dependent information in the descriptor, then the
manufacturer_dependent_information_length field shall be zero and the
manufacturer_dependent_information field shall not exist.

extended_information: The extended_information field is used to place information in later generation
descriptors, and is not to be used in descriptors using this version of the specification. As controllers
access the unit identifier descriptor with a generation_ID higher than was used for their own descriptor
mechanism, they shall be aware that this field may exist. A controller can check if data exists in this field
using the following formula:

unit_identifier_descriptor_length >
10 + (number_of_root_lists * size_of_list_ID) + unit_information_length +
manufacturer_dependent_information_length

Under the condition above, a legacy controller can assume that there is extended data that it cannot access.
In these circumstances, controllers must not assume that an error condition has occurred; rather, they
should assume that the descriptor has been extended.

TA Document 1999025, July 23, 2001 AV/C Descriptor Mechanism Specification Version 1.0

 Copyright  2001, 1394 Trade Association. All rights reserved. Page 35

A unit_identifier_descriptor_length less than the value from the equation above is an error.

It is recommended that extended_information field is extended with the general info block structure defined
in clause 7.6 “Information blocks” on page 45.

7.2 Subunit identifier descriptor

The subunit identifier descriptor is the highest-level descriptor in a subunit. The subunit identifier
descriptor is required if the subunit supports the descriptor mechanism and, therefore, it shall not be
deleted. The following figure shows the subunit identifier descriptor:

Address

Le
ng

th
,

by
te

s

C
on

tr
ol

le
r

R
ea

d/
W

rit
e

Contents

00 0016 2 R subunit_identifier_descriptor_length
00 0116
00 0216 1 R generation_ID
00 0316 1 R size_of_list_ID = i
00 0416 1 R size_of_object_ID
00 0516 1 R size_of_entry_position
00 0616 2 R number_of_root_lists = n
00 0716
00 0816 i R root_list_id[0]

:
: :
: i R root_ list_id[n-1]
:
: 2 R subunit_type_dependent_information_length = j
:
:
: j – 1 subunit_type_dependent_information…
:
: 2 R manufacturer_dependent_information_length = k
:
:
: k – 2 manufacturer_dependent_information…
:
: – 1 extended_information (optional)…
:

1 depends on the subunit-type specification.
2 depends on the how the vendor defines these fields.

Figure 7.3 – Subunit Identifier Descriptor

7.2.1 Subunit identif ier descriptor f ields

subunit_identifier_descriptor_length: The subunit_identifier_descriptor_length field contains the
number of bytes which follow in this descriptor structure. The value of this field does not include the length
field itself. The subunit identifier descriptor has a maximum size of 64 kbytes.

AV/C Descriptor Mechanism Specification Version 1.0 TA Document 1999025, July 23, 2001

Page 36 Copyright  2001, 1394 Trade Association. All rights reserved.

generation_ID: The generation_ID field specifies which AV/C descriptor format is used by this subunit
for all data structures it maintains, and the command sets that manipulate them. See Table 7.1 on page 33
for generation_ID values and meanings.

size_of_list_ID: The size_of_list_ID field indicates the number of bytes used to specify a list ID field in
descriptors and commands. Note that list descriptors do not contain list IDs, instead they exist in their
parent descriptor as root_list_ID or child_list_ID. The value of this field shall not change. If this value is
016, then list descriptors are not supported by the subunit.

size_of_object_ID: The size_of_object_ID field indicates the number of bytes used to indicate an
object_ID for this subunit. All entries maintained within the subunit that have an object_ID (some lists may
contain entries without object_ID fields) shall have this number of bytes for their ID. The value of this field
may change depending on the subunit-type specification. If the subunit does not use the object_ID field in
entry descriptors, the value of this field may shall be 016.

size_of_entry_position: The size_of_entry_position field indicates the number of bytes used when
referring to an entry by its position in its list. All such references used within the subunit shall have this
number of bytes for the position reference. The value of this field may change depending on the subunit-
type specification. If this field is 0, then usage of descriptor_specifier 2016 in descriptor commands is not
supported.

number_of_root_lists: The number_of_root_lists field contains the number of root list descriptors in this
subunit.

root_list_id[x]: The root_list_id[x] fields are the ID values for each of the root list descriptors in this
subunit.

subunit_dependent_information_length: The subunit_dependent_information_length field specifies the
number of bytes in the subunit_dependent_information field.

subunit_dependent_information: The subunit_dependent_information field contains information whose
format and contents will depend on the type of subunit this is describing. If there is no subunit-dependent
information in the descriptor, then the subunit_dependent_information_length field shall be zero and the
subunit_dependent_information field shall not exist. For more information on how to define this field, see
section 7.5 “Specific information fields in descriptors” on page 43.

manufacturer_dependent_information_length: The manufacturer_dependent_information_length field
specifies the number of bytes in the manufacturer_dependent_information field.

manufacturer_dependent_information: The manufacturer_dependent_information field is used for
vendor-specific data. The format and contents are completely up to the manufacturer. If there is no
manufacturer dependent information in the descriptor, then the
manufacturer_dependent_information_length field shall be zero and the
manufacturer_dependent_information field shall not exist.

extended_information: The extended_information field is used to place information in later generation
descriptors, and is not to be used in descriptors using this version of the specification. As controllers
access the subunit identifier descriptor with a generation_ID higher than was used for their own descriptor
mechanism, they shall be aware that this field may exist. A controller can check if data exists in this field
using the following formula:

subunit_identifier_descriptor_length >
10 + (number_of_root_lists * size_of_list_ID) + subunit_dependent_information_length +
manufacturer_dependent_information_length

TA Document 1999025, July 23, 2001 AV/C Descriptor Mechanism Specification Version 1.0

 Copyright  2001, 1394 Trade Association. All rights reserved. Page 37

Under the condition above, a legacy controller can assume that there is extended data that it cannot access.
In these circumstances, controllers must not assume that an error condition has occurred; rather, they
should assume that the descriptor has been extended.

A subunit_identifier_descriptor_length less than the value from the equation above is an error.

It is recommended that extended_information field is extended with the general info block structure defined
in clause 7.6 “Information blocks” on page 45.

AV/C Descriptor Mechanism Specification Version 1.0 TA Document 1999025, July 23, 2001

Page 38 Copyright  2001, 1394 Trade Association. All rights reserved.

7.3 List descriptor

A list descriptor is a container of entry descriptors. It also has fields for information related to the list. All
list descriptors have the same layout, which includes standard fields at the beginning, and then a collection
of entries. The list descriptor is shown below.

Address

Le
ng

th
,

by
te

s

C
on

tr
ol

le
r

R
ea

d/
W

rit
e

Contents

00 0016 2 R list_descriptor_length
00 0116
00 0216 1 R list_type

: 1 R attributes
: 2 R list_specific_information_length = i
:
:
: i – 2 list_specific_information…
:
: see4 R number_of_entry_descriptors = n
:
:
: see1 – 5 entry_descriptor[0]…
:
: :
:
: see1 –5 entry_descriptor[n-1]…
:
: see3 – 2 extended_information (optional)…
:

1 the length of this field is determined by reading its first two bytes, that is, length = value in first
 two bytes + 2.
2 list type and subunit-type dependent.
3 for the length of this field, see the description of extended_information below.
4 The length of this field is equal to the value of the size_of_entry_position field in the (sub)unit

identifier descriptor.
5 See Figure 7.5 – General entry descriptor

Figure 7.4 – General List Descriptor

7.3.1 List descriptor f ields

list_descriptor_length: The list_descriptor_length field contains the number of bytes which follow in the
list descriptor structure. This field is two bytes in length. The value of this field does not include the length
field itself.

list_type: The list_type field indicates the type of the list descriptor and the formats of its fields to the
extent that a controller knowing the type can also know how to read or write to the list. Lists are defined
either by this specification or by their unit or subunit-type specifications and are assigned list type values.
For information on the list_type, refer to clause 6.3.1 “List, entry, and info block type fields” on page 27.

TA Document 1999025, July 23, 2001 AV/C Descriptor Mechanism Specification Version 1.0

 Copyright  2001, 1394 Trade Association. All rights reserved. Page 39

attributes: The attributes contains bit flags which indicate attributes that pertain to the entire list structure.

The following table illustrates the attributes that are defined for list descriptors.

Table 7.2 – List descriptor attribute values

Attribute
Meaning

1xxx xxxx has_more_attributes: If this bit is set to 1, then the next byte is also
an attributes byte. All extended attribute bytes shall use this bit to
indicate an extension to the next byte.

In this and future versions of this specification, this bit shall be 0.

x1xx xxxx skip: It is recommended for unit and subunits to not use this bit. If
used, this bit indicates that the entire list’s underlying data is no longer
available or valid. If this bit is set to 1, the controller must ignore the
list. If this bit is set to 0, the data in the list prior to its entries is valid,
but entries within the list may still need to be skipped. Refer to the
entrys’ skip attribute to determine whether they should be skipped.

The use of this bit is unit, subunit-type and list type dependent. If a
unit, subunit-type or list type does not use this attribute, its default
value shall be 0.

The unit or subunit can use this bit to perform a “delayed memory
clean up” operation. By setting this bit after a list deletion request, the
unit or subunit can defer the actual deletion and reclamation of this
memory until a convenient time. The unit or subunit may set this bit to
1 as a result of a controller deleting the list.

xx1x xxxx Reserved

xxx1 xxxx entries_have_object_ID: If this bit is set to 1, then all entries in this
list have an object_ID field. If it is 0, then none of the entries in this list
have an object_ID field.

This attribute bit shall not change.

xxxx 1xxx up_to_date: This bit indicates the validity of data.

If this bit is set to 1, then the entire list is known by the unit or subunit
to match with its underlying data at the time the list was opened. If this
bit is set to 0, then some data in the list may be stale. Refer to the
entry’s up_to_date attribute to determine whether it is up to date.

The use of this bit is unit or subunit-type dependent. If a unit or
subunit-type does not use this attribute, its default value shall be 1.

When data is stale, the unit or subunit may or may not be sure of this,
and the controller should take this into consideration when dealing with
the data.

This attribute shall not change while the descriptor is open.

all others Reserved for future specification.

list_specific_information_length: The list_specific_information_length field specifies the number of bytes
used for the following list_specific_information field. The size of this field is two bytes, and is NOT
included in the calculation.

list_specific_information: The list_specific_information field contains information that is specific to a
particular list_type, and may be partially writeable dependent on that type. For more information on general

AV/C Descriptor Mechanism Specification Version 1.0 TA Document 1999025, July 23, 2001

Page 40 Copyright  2001, 1394 Trade Association. All rights reserved.

guidelines about how to define this field, see section 7.5 “Specific information fields in descriptors” on
page 43.

Refer to the specific list_type definitions in unit and subunit-type specifications for more details on this
field.

number_of_entry_descriptors: The number_of_entry_descriptors field contains the number of entry
descriptors in this list.

entry_descriptor[x]: The entry_descriptor[x] field is an entry descriptor. See section 7.4 “Entry
descriptor” on page 41 for more information.

extended_information: The extended_information field is used to place added information for future
extension of the general list descriptor, and is not to be used in descriptors using this version of the
specification. It is recommended that these fields are extended with the general info block structure defined
in clause 7.6 “Information blocks” on page 45. If a controller needs to, it can check if data exists in this
field using the following formula:

list_descriptor_length >
4 + list_specific_information_length + size_of_entry_position

+)2)1(__(

1
∑

=

+−
sdescriptorentryofnumber

i

ilengthdescriptorentry

A list_descriptor_length field less than a value from the equation above is an error.

As controllers access the list descriptor with a generation_ID (found in the (sub)unit identifier descriptor)
higher than was used for their own descriptor mechanism, they shall be aware that this field may exist.
Under this condition, a legacy controller can assume that there is extended data that it cannot access. In
these circumstances, controllers must not assume that an error condition has occurred; rather, they should
assume that the descriptor has been extended.

TA Document 1999025, July 23, 2001 AV/C Descriptor Mechanism Specification Version 1.0

 Copyright  2001, 1394 Trade Association. All rights reserved. Page 41

7.4 Entry descriptor

All entry descriptors share a common format. Each entry includes entry-specific information describing an
object within the unit or subunit. The entry descriptor has the following structure:

Address
Offset Le

ng
th

, b
yt

es

C
on

tr
ol

le
r

R
ea

d/
W

rit
e

Contents

0016 2 R entry_descriptor_length
0116
0216 1 R entry_type
0316 1 R attributes

: see1 R child_list_ID (optional)
:
:
: see2 – 3 object_ID (optional)
:
:
: 2 R entry_specific_information_length = i
:
:
: i – 3 entry_specific_information…
:
: see4 – 3 extended_information (optional)…
:

1 the length of this field is equal to the size_of_list_ID in the (sub)unit identifier descriptor.
2 the length of this field is equal to the size_of_object_ID in the (sub)unit identifier descriptor.
3 entry type and subunit-type dependent.
4 for the length of this field, see the description of extended_information below.

Figure 7.5 – General entry descriptor

NOTE — The child_list_ID and object_ID fields exist only if specified in the attributes field of the entry descriptor
and the list descriptor that contains the entry descriptor, respectively.

7.4.1 Entry descriptor f ields

entry_descriptor_length: The entry_descriptor_length field contains the number of bytes which follow in
this descriptor structure. The value of this field does not include the length field itself.

entry_type: The entry_type field indicates the type of the entry descriptor and the formats of its fields to
the extent that a controller knowing the type can also know how to read or write to the entry. Entries are
defined either by this specification or by their unit or subunit-type specifications (at the time of this writing,
there are no general entry types defined in this specification) and are assigned entry type values. For
information on the entry_type, refer to 6.3.1, “List, entry, and info block type fields” on page 27.

attributes: The attributes field contains bit flags which indicate attributes that pertain to the entire entry
structure. The following table illustrates the attributes that are defined for entry descriptors.

AV/C Descriptor Mechanism Specification Version 1.0 TA Document 1999025, July 23, 2001

Page 42 Copyright  2001, 1394 Trade Association. All rights reserved.

Table 7.3 – Entry descriptor attribute values

Attribute Meaning

1xxx xxxx has_mor

e_attributes: If this bit is set to 1, then the next byte is also an
attributes byte. All extended attribute bytes shall use this bit to
indicate an extension to the next byte.

In this and future versions of this specification, this bit shall be 0.

x1xx xxxx skip: This bit indicates that the entry’s underlying data is no longer
available or valid. If this bit is set to 1, the controller must skip the
entry. If this bit is set to 0, the data is available and the controller
may read or write to the information in the entry.

The use of this bit is unit, subunit-type and entry type dependent. If
a unit, subunit-type or entry type does not use this attribute, its
default value shall be 0.

The unit and subunit can use this bit to perform a “delayed memory
clean up” operation. By setting this bit after an entry deletion
request, the unit and subunit can defer the actual deletion and
reclamation of this memory until a convenient time. The unit or
subunit may set this bit to one as a result of a controller deleting
the entry.

xx1x xxxx has_child_ID: If this bit is set to 1, then the entry has the
child_list_ID field. If this bit is set to 0, then the entry does not have
this field.

xxx1 xxxx Reserved

xxxx 1xxx up_to_date: This bit indicates the validity of data.

If this bit is set to 1, then the entry is known by the unit or subunit
to match with its underlying data. If this bit is set to 0, then the
entry might be stale.

The use of this bit is unit or subunit-type dependent. If a unit or
subunit type does not use this attribute, its default value shall be 1.

When data is stale, the unit or subunit may or may not be sure of
this, and the controller should take this into consideration when
dealing with the data.

This attribute shall not change while the descriptor is open.

all others Reserved for future specification.

child_list_ID: The child_list_ID is an optional field that holds the list ID of the child list descriptor that
this entry refers to. If the entry does not have a child list, then the has_child_ID bit of the attributes field in
the entry descriptor is set to 0, and this field shall not exist in the structure. An entry can have only one
child_list_ID field.

object_ID: The object_ID is an optional field that contains a value that uniquely identifies the object that is
represented by this entry, and can be used to reference the entry when executing descriptor commands. The
object_ID can be writeable depending on the entry’s type definition. Either all or no entries in a list contain
object_IDs.

TA Document 1999025, July 23, 2001 AV/C Descriptor Mechanism Specification Version 1.0

 Copyright  2001, 1394 Trade Association. All rights reserved. Page 43

For more information on object_IDs, see clause 6.3.3, “Object_IDs” on page 29.

entry_specific_information_length: The entry_specific_information_length field specifies the number of
bytes used for the following entry_specific_information field. The length field is two bytes and is not
included in this calculation. If the value of this field is zero, then the entry_specific_information field shall
not exist.

entry_specific_information: The entry_specific_information area will have a format and contents specific
to the type of entry being referenced, which is defined by the entry type’s unit or subunit-type specification.
For more information on general guidelines about how to define this field, see section 7.5 “Specific
information fields in descriptors” on page 43.

Refer to the specific entry_type definitions in the unit or subunit specification for more details on this field.

extended_information: The extended_information field is used to place information for future extension
of the general entry descriptor, and is not used in this version of the specification. It is recommended that
these fields are extended with the general info block structure defined in clause 7.6 “Information blocks” on
page 45. If a controller needs to, it can check if data exists in this field using the following formula:

entry_descriptor_length >
4 + (if has_child_ID attribute exists, size_of_list_ID) +
(if has_object_ID attribute exists, size_of_object_ID) + entry_specific_information_length

An entry_descriptor_length field less than the equation above is an error.

As controllers access the entry descriptor with a generation_ID (found in the (sub)unit identifier descriptor)
higher than was used for their own descriptor mechanism, they shall be aware that this field may exist.
Under this condition, a legacy controller can assume that there is extended data that it cannot access. In
these circumstances, controllers must not assume that an error condition has occurred; rather, they should
assume that the descriptor has been extended.

7.5 Specific information fields in descriptors (informative)

All three general descriptors contain specific information fields. These fields usually contain the primary
information carried by the descriptor. The specific information fields for each descriptor are defined as
follows:

Table 7.4 – General Descriptor’s Specific Information Fields

Descriptor Type Specific Information Fields

Unit Identifier Descriptor unit_information

manufacturer_dependent_information

Subunit Identifier Descriptor subunit_dependent_information

manufacturer_dependent_information

List Descriptor list_specific_information

Entry Descriptor entry_specific_information

There are three suggestions for the configuration of these fields when designing their format as shown in
the figures below. Unit and subunit-type specifications will contain the actual formats of these fields.

AV/C Descriptor Mechanism Specification Version 1.0 TA Document 1999025, July 23, 2001

Page 44 Copyright  2001, 1394 Trade Association. All rights reserved.

Address Offset

Le
ng

th
,

by
te

s

C
on

tr
ol

le
r

R
ea

d/
W

rit
e

Contents

00 0016
00 0116 see1 – 2 Non Info Block data...

:
1 The size of this block is equal to the specific information length.
2 unit or subunit-type dependent.

Figure 7.6 – Specific information fields with non info block data

Address Offset

Le
ng

th
,

by
te

s

C
on

tr
ol

le
r

R
ea

d/
W

rit
e

Contents

00 0016
00 0116 see1 – 2 Info Block data...

:
1 The size of this block is equal to the specific information length.
2 unit or subunit-type dependent.

Figure 7.7 – Specific information fields with info blocks only

Address Offset

Le
ng

th
,

by
te

s

C
on

tr
ol

le
r

R
ea

d/
W

rit
e

Contents

00 0016 2 – 2 non_info_block_length = I
00 0116
00 0216 i – 3 Non Info Block data...

:
: see1 – 3 Info Block data...
:

1 The size of this block is equal to the specific information length – 2 – i.
2 unit or subunit-type dependent. (Either R or R/W)
3 unit or subunit-type dependent.

Figure 7.8 – Specific information fields with both

If non info block only or info block only data shall exist in these fields, then the specific information does
not need an internal length field, since the length is provided by the previous fields-length field.

If info block data exists with non-info block data, then the non-info block data shall precede the info block
data, and a two byte non_info_block_length field shall precede the non-info block data.

TA Document 1999025, July 23, 2001 AV/C Descriptor Mechanism Specification Version 1.0

 Copyright  2001, 1394 Trade Association. All rights reserved. Page 45

7.6 Information blocks

Information blocks (or info blocks) are defined as a group of extensible and common data structures that
may be used across a broad range of units and subunits. They further increase the organization of AV/C
data, and are consistent with the descriptor navigation model. Information blocks can be placed within the
following areas:

— unit_dependent_information and manufacturer_dependent_information field of the unit identifier
descriptor

— subunit_dependent_information and manufacturer_dependent_information field of the subunit
identifier descriptor

— list_specific_information field of the list descriptor

— entry_specific_information field of the entry descriptor

— extended fields of all general descriptors

— nested within another info block

— inside subunit-dependent descriptors – refer to the subunit-type specification for more details.

This information block structure is depicted in each general descriptor in the following figure:

AV/C Descriptor Mechanism Specification Version 1.0 TA Document 1999025, July 23, 2001

Page 46 Copyright  2001, 1394 Trade Association. All rights reserved.

List Descriptor Entry Descriptor

list_specific_information

non-info block data

information block 1
nested information block A

nested information block n

...
information block n

nested information block A

nested information block n

entry_specific_information

...

...

non-info block data

information block 1
nested information block A

nested information block n
...

...
information block n

nested information block A

nested information block n
...

...

...

...

Note: Nested information blocks may contain other nested information blocks, producing an internal
hierarchy.

Subunit Identifier Descriptor

subunit_dependent_information

information defined by subunit

information block 1
nested information block A

nested information block n

...
information block n

nested information block A

nested information block n

...

...

...

...

Figure 7.9 – Information blocks within (sub)unit identifier, list and entry descriptors

Information Blocks have a data structure extensibility mechanism, similar to the IEEE 1212 tagged-field
model. However, information blocks differ from the 1212 model in one basic way: where 1212 defines a
mechanism for EVERY field to have its own tag (and length), an information block contains several fields
which are associated with the one information block tag. In this way, information blocks are closer to the
leaf data structures defined by IEEE 1212.

Controllers that understand the info block model should be designed to expect any info blocks to occur at
any location in a descriptor within the constraints of where info blocks are expected, and to not treat their
appearance as an error. If a controller discovers an info block of an unknown type, it shall skip that info
block and any nested info blocks it may contain.

TA Document 1999025, July 23, 2001 AV/C Descriptor Mechanism Specification Version 1.0

 Copyright  2001, 1394 Trade Association. All rights reserved. Page 47

Info blocks generally do not have dependencies on their order of appearance in a descriptor, so controllers
should also not assume significance in the order in which they are discovered. However, certain units and
subunit types may set rules on the order of appearance of info blocks; controllers that understand these unit
or subunit-specific rules may assume the appearance order of info blocks. Refer to the appropriate unit or
subunit-type specification for details.

7.6.1 Information block structure

The basic structure of an information block is as follows:

Address
Offset

Le
ng

th
,

by
te

s

C
on

tr
ol

le
r

R
ea

d/
W

rit
e

Contents

00 0016 2 R/W compound_length = i
00 0116
00 0216 2 R/W info_block_type
00 0316
00 0416 2 R/W primary_fields_length = j
00 0516
00 0616

: j – 1 primary_fields…
: (info block type-specific)
:
: i-j-4 – 1 secondary_fields…
: (optional)

1 unit or subunit-type dependent.

Figure 7.10 – General information block

7.6.1.1 Information block f ields

compound_length: The compound_length field specifies the number of bytes for the remainder of this info
block structure, which is all fields that follow this length field. The two bytes used for the
compound_length field are NOT included in this value.

info_block_type: The info_block_type field describes the meaning and format of this info block. The type
definitions are divided into two scopes: general and subunit-type specific. Within the subunit-type specific
range, additional classifications may apply (for example, the disc subunit defines information blocks that
are specific to a given type of disc media). For more information, see clause 6.3.1, “List, entry, and info
block type fields” on page 27.

For details on the general information blocks that are currently defined, please refer to [R10]. For details on
subunit-type specific info block type definitions, please refer to the appropriate unit or subunit-type
specification.

primary_fields_length: The primary_fields_length field specifies the number of bytes for the following
primary_fields.

AV/C Descriptor Mechanism Specification Version 1.0 TA Document 1999025, July 23, 2001

Page 48 Copyright  2001, 1394 Trade Association. All rights reserved.

primary_fields: The primary_fields area contains a set of fields in a data structure that are specific to the
type of info block represented by the info_block_type field. The meaning and format of these fields is fixed,
and will NOT be re-defined once the info block type is defined.

The interpretation of the primary fields depends not only on the info block type, but also on the SCOPE of
where the info block is found. For example, if an info block is found inside of a list_specific_information
structure, then that info block applies to the list. If the info block is found inside of an
entry_specific_information structure, then it applies to that entry. Likewise, if an info block is nested inside
another info block, then the nested block applies to its container block. A controller which understands the
primary_fields area will always know the basic structure of the given info block. Note that while this area is
well defined, it MAY vary in length depending on its definition. For example, it might consist of a set of
fields which is common in the AV/C descriptor mechanism, such as {number_of_XXX_fields,
XXX_field[0],…, XXX_field[n – 1]}. Depending on the value of number_of_XXX_fields, the size of the
well-defined area might be different from one info block to the next, but the MEANING and interpretation
is the same. Thus, controllers will always be able to navigate the structure (or navigate around the structure
by using the length fields to jump past bytes).

The primary field may contain mandatory info blocks (for example, the name_info_block contains the
character_code_info_block, the language_code_info_block, and the raw_text_info_block.) Info blocks in
the primary field share the level for their references with optional info blocks in the secondary field.

secondary_fields: The secondary_fields area represents optional info blocks that may be nested inside the
one being parsed. Generally, there may be any number and any type of info blocks in this area, but unit or
subunit-type specifications may impose certain restrictions. Those info blocks may further contain other
info blocks.

Generally, there are no theoretical limits to the level of nesting, however, for practical reasons only a few
levels would likely be useful. Unit and subunit-type specifications may impose limits on the level of
nesting; refer to the appropriate unit or subunit-type specification for details.

A controller can detect the presence of secondary_fields by comparing the compound_length field to the
primary_fields_length field. If compound_length = primary_fields_length + 4, then there are no
secondary_fields (note that the value of compound_length includes the two bytes used for
primary_fields_length). If the compound_length field is greater than primary_fields_length + 4, then one or
more nested info blocks are present. If the compound_length field is LESS THAN the
primary_fields_length + 4, then an error has occurred.

7.6.2 Expanding information block structures

There are two main reasons for expanding an information block structure:

1) To add new fields which were not included in the original definition.

2) To allow a flexible means of associating pieces of data with other pieces of data, based on the
needs and/or capabilities of the user, the controller, and the unit or subunit (for example, to
associate a set of lyrics with an audio track, to associate some user data with an image, etc.).

If an existing information block type needs to have additional fields added to it, then new information
blocks shall be defined and nested inside the existing information block. The primary_fields shall NOT be
changed to accommodate new field definitions.

TA Document 1999025, July 23, 2001 AV/C Descriptor Mechanism Specification Version 1.0

 Copyright  2001, 1394 Trade Association. All rights reserved. Page 49

7.6.3 Restrict ions on information block contents

The general information block allows for any type of information to be embedded in the block, as long as
its information_block_type field is defined and optional nested information blocks are present. It is possible
that some restrictions may be placed on the allowable contents based on a unit or subunit implementation,
or a unit or subunit-type specification.

For example, a name_info_block that describes the title of an audio track on a disc includes the language
code for the text. Even though a large number of language codes may be defined, a particular
implementation of the unit or subunit might not support some of them, so it places a restriction on which
language codes can be stored in the name_info_block.

Also, as mentioned previously, additional restrictions such as the number, type, and level of nested
information blocks may be imposed by an implementation or specification.

For unit, subunit- and media-type restrictions, please refer to the appropriate specification documents.

AV/C Descriptor Mechanism Specification Version 1.0 TA Document 1999025, July 23, 2001

Page 50 Copyright  2001, 1394 Trade Association. All rights reserved.

8. Referencing descriptors and info blocks

When AV/C commands are used to operate on descriptors and info blocks, descriptor_specifier structures
reference the particular descriptors, and info_block_reference_path structures reference info blocks.

The following clause describes each of these descriptor specifier types. The info_block_reference_path is
discussed in 8.3 “Information block reference path” on page 55.

8.1 Descriptor specifier

In order to reference existing descriptors and info blocks or create new descriptors in descriptor hierarchies,
descriptor and info block commands use a data structure called the descriptor_specifier. The
descriptor_specifier has been enhanced to include specifying info blocks.

The descriptor specifier is a versatile data structure that allows the designer several options for specifying
descriptors based how a unit or subunit organizes its data. The exact type of the specifier used will vary
based on the kind of descriptor, the command used, and the unit or type of subunit that is managing that
descriptor.

The general AV/C model defines the (sub)unit identifier descriptor, entries, lists, and info blocks as the
kinds of data structures that are accessed through descriptor and info block commands. It is possible that
subunit-dependent descriptors may be defined exclusively for a particular type of subunit. Such descriptors
would also be accessed using the descriptor specifier structure in commands.

The following table illustrates the general descriptor specifier data structure:

 length msb lsb
operand[x] 1 descriptor_specifier_type

:
: see1 descriptor_specifier_type_specific_fields
:

1 The length of this field depends on the descriptor specifier type

Figure 8.1 – General descriptor specifier

descriptor_specifier_type: The descriptor_specifier_type field indicates what kind specifier is used and
determines the information that comes next in the descriptor_specifier_type_specific_fields. The following
table lists the descriptor_specifier_type encoding:

TA Document 1999025, July 23, 2001 AV/C Descriptor Mechanism Specification Version 1.0

 Copyright  2001, 1394 Trade Association. All rights reserved. Page 51

Table 8.1 – Descriptor_specifier_type meanings

descriptor_
specifier_type

Purpose

Meaning

0016 Reference (Sub)unit identifier descriptor
1016 Reference List descriptor - specified by list_ID
1116 Reference/

Create
List descriptor - specified by list_type

2016 Reference Entry descriptor - specified by entry position in a list specified by
list_ID

2116 Reference Entry descriptor - specified by object_ID in a list specified by
list_type under a root list specified by root_list_ID

2216 Create Entry descriptor – specified by entry_type
2316 Reference Entry descriptor - specified by object_ID
3016 Reference Information block – specified by its type and instance count in a

containing info block or descriptor
3116 Reference Information block – specified by position in the containing info

block or descriptor
8016 - BF16 Reference Subunit dependent descriptor. Refer to the subunit-type

specification for more details
all others Reserved for future specification

See each unit or subunit-type specification for the descriptor_specifiers that are supported by that unit or
subunit type. Each descriptor command will use a subset of descriptor specifiers above. See each command
for details.

descriptor_specifier_type_specific_fields: Each of the descriptor_specifier_type values in the table indicates the
format and contents of the descriptor_specifier_type_specific_fields and are given in the sections below.

8.2 Descriptor_specifiers for descriptors

8.2.1 (Sub)unit identif ier descriptor specif ier type

The descriptor specifier for (sub)unit identifier descriptor is as follows:

 length msb lsb
operand[x] 1 descriptor_specifier_type = 0016

Figure 8.2 – Descriptor_specifier for a (sub)unit identifier descriptor

The descriptor_specifier_type_specific_fields does not exist (the descriptor_specifier consists of only the
descriptor_specifier_type field) because there can be only one (sub)unit identifier descriptor for a unit or
subunit.

NOTE — Whether the unit identifier descriptor or the subunit identifier descriptor is being referenced in a command
using this descriptor specifier depends on whether the command is addressed to the unit or subunit, as defined in its
subunit_type field. For more information, see “subunit_type” in reference [R9].

8.2.2 List descriptor specified by l ist ID

The descriptor specifier for a list descriptor specified by list ID is as follows:

AV/C Descriptor Mechanism Specification Version 1.0 TA Document 1999025, July 23, 2001

Page 52 Copyright  2001, 1394 Trade Association. All rights reserved.

 length msb lsb
operand[x] 1 descriptor_specifier_type = 1016

:
: see1 list ID (child or root)
:

1 The length shall be equal to the value given in the (sub)unit identifier descriptor’s size_of_list_ID field.

Figure 8.3 – Descriptor_specifier for a list descriptor specified by list ID

list ID: The descriptor_specifier_type_specific_fields consists of the desired list ID. All lists within the
scope of a unit or subunit shall have unique list ID values, so there is no need to resolve the scope any
further.

8.2.3 List descriptor specif ied by l ist_type

The descriptor_specifier for a list descriptor specified by its list_type is as follows:

 length msb lsb
operand[x] 1 descriptor_specifier_type = 1116

: 1 list_type

Figure 8.4 – Descriptor_specifier for a list descriptor specified by list_type

list_type: This descriptor specifier is normally used when units or subunits that have only one list per list
type specified.

NOTE — If multiple lists exist in a subunit with the same list type, the specified descriptor is ambiguous. When used
with all descriptor commands except the SEARCH DESCRIPTOR command, a target shall return a response with an
arbitrary descriptor that matches the specifier.

8.2.4 Entry descriptor specif ied by posit ion in its l ist

Entries can be referenced by their position in a specified list as shown in the figure below.

 length msb lsb
operand[x] 1 descriptor_specifier_type = 2016

:
: see1 list ID (child or root)
:
:
: see2 entry_position
:

1 The length shall be equal to the value given in the subunit identifier descriptor’s size_of_list_ID field.
2 The length shall be equal to the value given in the subunit identifier descriptor’s size_of_entry_position field.

Figure 8.5 – Descriptor_specifier for referencing an entry’s position

list ID: This is the list ID of the list containing the entry.

entry_position: The entry_position field indicates the position of the target entry within the list that was
specified by the list ID field. Entry positions start at 0. The value of all FF16 bytes for the entry_position is
reserved, and specifies the end of the list when used with the WRITE DESCRIPTOR and CREATE
DESCRIPTOR control commands. Please refer to the definition of those commands for details.

TA Document 1999025, July 23, 2001 AV/C Descriptor Mechanism Specification Version 1.0

 Copyright  2001, 1394 Trade Association. All rights reserved. Page 53

8.2.5 Entry descriptor specif ied by object_ID

For the object_ID reference, the descriptor_specifier is as follows:

 length msb lsb
operand[x] 1 descriptor_specifier_type = 2116

:
: see1 root_list_ID
:
: 1 list_type
:
: see2 object_ID
:

1 The length shall be equal to the value given in the subunit identifier descriptor’s size_of_list_ID field.
2 The length shall be equal to the value given in the subunit identifier descriptor’s size_of_object_ID field.

Figure 8.6 – Descriptor_specifier for an object_ID reference

root_list_ID: The root list ID under which the entry with the object_ID exists.

list_type: The list type value, either subunit-type specific or general, of the list(s) that contains the desired
entry.

object_ID: The object_ID field indicates the unique object_ID. This reference may be used when
object_ID values are unique among the scope of all lists that share the same list_type value, within the
descriptor hierarchy indicated by root_list_ID.

WARNING: In some cases, this reference may not uniquely identify a specific entry within a descriptor
hierarchy. In case one or more entries in the descriptor hierarchy indicated by the root list have the same ID
and belong to lists with the same list type, then an arbitrary entry will be addressed. This will depend on the
particular technology being represented by the list and entry descriptors.

NOTE — The SEARCH DESCRIPTOR command can use an ambiguous descriptor specification to search through
multiple descriptors.

It is also possible that object_IDs do not exist in entry descriptors for some list or entry types. Whether
object_IDs exist in child entries is determined by the attributes byte(s) within the list descriptor. In this
case, the entry must be specified by its position in the list using the descriptor_specifier_type = 2016.

8.2.6 Entry descriptor specif ied by entry_type

The format of descriptor_specifier_type 2216 is only valid for creating descriptors, and is as follows:

 length msb lsb
operand[x] 1 Descriptor_specifier_type = 2216

: 1 entry_type

Figure 8.7 – Descriptor_specifier for an entry specified by entry_type

entry_type: Entry type can be either a subunit-type specific or general type.

AV/C Descriptor Mechanism Specification Version 1.0 TA Document 1999025, July 23, 2001

Page 54 Copyright  2001, 1394 Trade Association. All rights reserved.

8.2.7 Entry descriptor specif ied only by object_ID

An entry may be specified by object_ID only when the (sub) unit is designed to contain entries with unique
object_IDs within the entire descriptor hierarchy. The format of descriptor_specifier_type 2316 is as
follows:

 length msb lsb
operand[x] 1 descriptor_specifier_type = 2316

: see1 Object_ID
1 The length of object_ID is determined by the size_of_object_ID field in the subunit identifier descriptor

Figure 8.8 – Descriptor_specifier for an entry specified by object_ID only

object_ID: The requested object_ID of the entry to access.

8.2.8 Advantages and disadvantages of specifying by object_ID and
entry_posit ion (informative)

This section is intended to help subunit-type specification writers determine which descriptor_specifier to
use for their specification.

The following table shows the advantages and disadvantages for using the descriptor specifiers discussed in
the previous three sections.

Table 8.2 – Advantages and disadvantages to using the various entry specifiers

Descriptor_Specifier_
Type

Advantage Disadvantage

2016 (by entry_position)

1. Doesn’t require object ID.

2. Can be used for contents
discovery.

1. No guarantee that the same data
will be read each time due to
possible changes in the number
of entries in the list descriptor.

2. Contents may change during
discovery if entries are added or
deleted.

2116 (by object_ID) Controllers can access entries
without concern for whether entries
are added or removed from their
lists.

1. Controller cannot know IDs
without discovery, unless
controller originally wrote data, or
unless an object_ID scheme is
used.

2. object_IDs must be present in
descriptors.

2316 (by object_ID) Does not require list_type or list_ID
specifiers to access entry.

Object_IDs must be unique
throughout subunit.

A controller can specify by entry_position effectively for contents discovery. If entries contain object_IDs,
then once a controller has discovered and knows those IDs, it is more reliable for a controller to access a
descriptor by object_ID. Refer to the unit or subunit-type specification to determine which method(s) are
used.

NOTE — If a unit or subunit supports creating a descriptor, it must support specifying entries by entry_position.

TA Document 1999025, July 23, 2001 AV/C Descriptor Mechanism Specification Version 1.0

 Copyright  2001, 1394 Trade Association. All rights reserved. Page 55

8.3 Information block reference path

The information block reference path is used to reference info blocks in info block commands.

Info blocks, whether nested or not, can be thought of as existing at various levels hierarchically within a
descriptor. The descriptor which contains info blocks is considered to be at the highest level or level[0]. A
non-nested info block within the descriptor would exist at the next level down or level[1]. Nested info
blocks within info blocks are at even further levels.

At a specific level, info blocks may be referred to by their position, that is, the order in which they appear
when reading the container structure, i.e., their descriptor or info block, from the beginning to the end.
Another reference method is by the instance count of a specified info block type within its container
structure (e.g. the third block of type “x”).

Consider the following diagram, which shows a list descriptor, which contains some entry descriptors. One
of the entry descriptors contains two info blocks at level[1] (info blocks A and B). Info block B contains
two others (blocks X and Y) at level[2].

List Descriptor

Entry Descriptor 1

Entry Descriptor 2 (level[0])

Info Block A (level[1])

Info Block B (level[1])
Info Block X (level[2])

Info Block Y (level[2])

To access info block X, specify

Level[0] as entry descriptor 2

Level[1] as info block B

Level[2] as info block X

The entry descriptor is
specified as level[0]

Figure 8.9 – Referencing info blocks

When referencing info blocks that are inside of list descriptors or entry descriptors, the following rules
apply:

1) To access an info block in the list_specific_information area of a list, specify the list as level 0,
then the info block(s) at the subsequent levels.

2) To access an info block inside an entry descriptor, specify the entry as level 0, and the info
block(s) at the subsequent levels. Do NOT specify the list as level 0, and the entry as level 1.

AV/C Descriptor Mechanism Specification Version 1.0 TA Document 1999025, July 23, 2001

Page 56 Copyright  2001, 1394 Trade Association. All rights reserved.

Information blocks outside the entry descriptor are not candidates for access when the entry descriptor is
chosen as level[0].

The scope of the info blocks in Figure 8.9 above is that of entry descriptor 2.

8.3.1 The info_block_reference_path structure

The number of levels and the specification of each descriptor or info block at each level are referred to as
the info_block_reference_path. This structure has the following general format:

 length msb lsb
Operand[x] 1 number_of_levels = n

:
: see1 descriptor_specifier for descriptor at level[0]
:
:
: see1 descriptor_specifier for info block at level[1]
:
: :
:
: see1 descriptor_specifier for info block at level[n – 1]
:

1 The length of this field is determined by the descriptor specifier types used.

Figure 8.10 – Info_block_reference_path structure

number_of_levels: The number_of_levels field specifies the number of levels from the top of the info
block hierarchy to the level of the information block being specified.

level[n]: Level [0] is a descriptor specifier for a descriptor described in clause 8.2 “Descriptor_specifiers
for descriptors” on page 51. Level[1] to level[n-1] fields are descriptor specifiers for info blocks and each
specify an info block at the specified level (the level is the same as the index value). Descriptor specifiers
for info blocks are described in 8.4, “Descriptor_specifiers for info blocks ” on page 56.

Note the following:

1) There may be more levels in the full info block hierarchy than are specified in the structure (for
example, if the info block being referenced contains other info blocks, there are more levels to the
info block hierarchy).

2) The level [0] of a path is an identifiable descriptor structure. In Figure 8.9 above, entry descriptor
2 can be specified in a level [0] field of the info_block_reference_path, so it is the top of the path
(even though it looks like the list structure is the top of the path).

3) The minimum number of levels is 2.

8.4 Descriptor_specifiers for info blocks

Descriptor_specifiers for Info blocks are used within info block reference paths as described above.

8.4.1 Info block specif ied by info block type and instance count

The format of descriptor_specifier_type 3016 is only used in info block reference paths and is as follows:

TA Document 1999025, July 23, 2001 AV/C Descriptor Mechanism Specification Version 1.0

 Copyright  2001, 1394 Trade Association. All rights reserved. Page 57

 length msb lsb
operand[x] 1 descriptor_specifier_type = 3016

: 2 info_block_type
:
: 1 instance_count

Figure 8.11 – Info_block_specifier for an info block specified by its type and instance count

info_block_type: The info_block_type field specifies the type of info block.

instance_count: The instance_count specifies which info block instance of the specified type is being
referenced. For the first instance of an info block from the top of the container, instance_count = 0.

8.4.2 Info block specif ied by posit ion in container structure

The format of descriptor_specifier_type 3116 is only used in info block reference paths, and is as follows:

 length msb lsb
operand[x] 1 descriptor_specifier_type = 3116

: 1 info_block_position

Figure 8.12 – Descriptor_specifier for an info block, specified by its position

info_block_position: The info_block_position specifies the position, from the top of the container, defined
as the order of occurrence at a given info block hierarchy level of the information block.

This info block doesn’t consider the info block type when referencing the info block.

8.5 Info block reference path examples

For the following examples, refer to Figure 8.9.

The info_block_reference_path for info block X would appear as follows:

 length msb lsb
operand[x] 1 number_of_levels (n) = 3

: 2016 (entry ref. by position in list) Level 01
: XX16 (list ID MSB)
: 5 XX16 (list ID LSB)
: 0016 (entry position MSB)
: 0116 (entry position LSB)
: 2 3116 (info block ref. by position) Level 1
: 0116 (info block B position)
: 2 3116 (info block ref. by position) Level 2
: 0016 (info block X position)

1 Assumes 2-byte list ID and object position.

Figure 8.13 – Example info_block_reference_path structure

The use of specifier type 3016 (info block reference by type and instance count) would be similar; for this
example, assume that blocks A and B are different types and that X and Y are the same type.

The info_block_reference_path for info block X would then appear as follows:

AV/C Descriptor Mechanism Specification Version 1.0 TA Document 1999025, July 23, 2001

Page 58 Copyright  2001, 1394 Trade Association. All rights reserved.

 length msb lsb
operand[x] 1 number_of_levels (n) = 3

: 2016 (entry ref. by position in list) Level 01
: XX16 (list ID MSB)
: 5 XX16 (list ID LSB)
: 0016 (entry position MSB)
: 0116 (entry position LSB)
: 3016 (info block ref. by type and instance count) Level 1
: 4 XX16 (info block B type MSB)
: XX16 (info block B type LSB)
: 0016 (info block B instance count)
: 3016 (info block ref. by type and instance count) Level 2
: 4 XX16 (info block X type MSB)
: XX16 (info block X type LSB)
: 0016 (info block X instance count)

1 Assumes 2-byte list ID and object position

Figure 8.14 – Example info_block_reference_path structure

TA Document 1999025, July 23, 2001 AV/C Descriptor Mechanism Specification Version 1.0

 Copyright  2001, 1394 Trade Association. All rights reserved. Page 59

9. Descriptor and info block commands

9.1 Descriptor commands overview
This section defines commands that operate on descriptor and info block structures. Table 9.1 below
summarizes these commands.

Table 9.1 – Descriptor and info block commands

 Support level
(by ctype)

Opcode Value C S N Target Comments

CREATE DESCRIPTOR 0C16 O – – Unit or
subunit

Create a new list or entry
descriptor

OPEN DESCRIPTOR 0816 M1 O O Unit or
subunit

Gain and relinquish access to a
specified descriptor

READ DESCRIPTOR 0916 M1 – – Unit or
subunit

Reads data from a specified
descriptor

WRITE DESCRIPTOR 0A16 O O – Unit or
subunit

Writes data into a specified
descriptor

OPEN INFO BLOCK 0516 O O – Unit or
subunit

Gain and relinquish access to a
specified info block

READ INFO BLOCK 0616 O – – Unit or
subunit

Read a specified info block

WRITE INFO BLOCK 0716 O – – Unit or
subunit

Write data into a specified info
block

SEARCH DESCRIPTOR 0B16 O – – Unit or
subunit

Search for a pattern of data within
a descriptor set

OBJECT NUMBER SELECT 0D16 O O O Unit or
subunit

Select one or more entries using
an object_ID and list ID

1 mandatory only if the (sub)unit supports descriptors.

In the preceding table, a dash in one of the support level columns indicates that the command is not defined
for the ctypes, CONTROL, STATUS or NOTIFY, as indicated.

Closing a descriptor is done with an OPEN DESCRIPTOR subfunction. Deleting a descriptor is done with
a WRITE DESCRIPTOR subfunction.

NOTE — As of this revision of this specification, info blocks cannot be created or deleted apart from being created
as the result of a CREATE DESCRIPTOR / WRITE DESCRIPTOR command, or deleted as a result of a WRITE
DESCRIPTOR command deleting an entry or list.

9.2 Reading and writing AV/C descriptor structures

Prior to the creation of the information block model, all reading and writing of AV/C descriptors was
accomplished through the READ DESCRIPTOR and WRITE DESCRIPTOR commands.

The AV/C descriptor structures were designed to abstract the way a (sub)unit chooses to actually store data
internally. Only when it is time to provide or receive this data is it necessary to use the descriptor structure
formats.

AV/C Descriptor Mechanism Specification Version 1.0 TA Document 1999025, July 23, 2001

Page 60 Copyright  2001, 1394 Trade Association. All rights reserved.

This same concept applies to the information block model. Because information blocks are contained inside
of descriptor structures (or nested in other information blocks), the READ DESCRIPTOR command can be
used to read them.

However, information blocks are “encapsulated” blocks of information. Restrictions on their use and
location might be decided by a subunit implementation or type specification; therefore, a new command is
needed for modifying information blocks.

The WRITE INFO BLOCK command is used for this purpose. In the command, the specific info block and
the new data for that block is specified. The (sub)unit has the opportunity to check for violations of any
particular info block usage policies that may be in effect. If no violations are detected, the (sub)unit is free
to store the data internally in a proprietary manner (or a media-type-specific manner). However, if a
violation is detected, then the (sub)unit can return an explanation of why the command was rejected, and
the controller can attempt to fix the situation (or at least inform the user as to why the operation failed).

For details on the OPEN INFO BLOCK, READ INFO BLOCK and WRITE INFO BLOCK command,
please refer sections 9.7, 9.8 and 9.9.

Another reason for the command is to allow the (sub)unit to prepare any necessary supporting data
structures or other state information, and to link them together if necessary, in order to accommodate the
new information block.

The following diagram illustrates the relationship between descriptor structures and info blocks, and the
READ DESCRIPTOR, WRITE DESCRIPTOR, READ INFO BLOCK and WRITE INFO BLOCK
commands:

AV/C Descriptor Structure

general descriptor structure fields

information block fields (including
the primary fields and any nested

info blocks)

READ DESCRIPTOR
WRITE DESCRIPTOR

READ DESCRIPTOR
WRITE DESCRIPTOR
READ INFO BLOCK
WRITE INFO BLOCK

Figure 9.1 – AV/C Descriptor Structure

As shown above, the READ INFO BLOCK and WRITE INFO BLOCK control commands can only be
used on info blocks; the READ DESCRIPTOR and WRITE DESCRIPTOR control commands can be used
on descriptors or info blocks. For more information about creating and writing an info block using WRITE
DESCRIPTOR control commands, see clause 9.2.2.2 “Access rules for writing descriptors and info blocks”
on page 62. It is also possible to perform a READ/WRITE INFO BLOCK control command after issuing
OPEN DESCRIPTOR control command.

IMPORTANT: Some (sub)unit specifications might place restrictions on the use of READ/WRITE INFO
BLOCK/DESCRIPTOR combinations. Please refer to the (sub)unit specification document(s) for details.

TA Document 1999025, July 23, 2001 AV/C Descriptor Mechanism Specification Version 1.0

 Copyright  2001, 1394 Trade Association. All rights reserved. Page 61

 OPEN DESCRIPTOR

READ INFO BLOCK
WRITE INFO BLOCK

Figure 9.2 – relation between OPEN DESCRIPTOR and READ/WRITE INFO BLOCK

READ/WRITE INFO BLOCK commands are available to access info blocks in the descriptor which is
opened by OPEN DESCRIPTOR command. Please refer to section 9.2.2.1 “Access rules for opening
descriptors and info blocks” on page 61.

9.2.1 Access support

A (sub)unit may support three levels of access as follows:

— Descriptor Level 1: Access to entries and info blocks by opening their list (mandatory).

— Descriptor Level 2: Access to entries and info blocks by opening the entry (optional and not
recommended).

— Descriptor Level 3: Access to info blocks by opening the info block (optional and not
recommended).

While it is mandatory for a (sub)unit that has descriptors to support the OPEN DESCRIPTOR control
commands, it is not mandatory nor recommended for it to support that command down to the individual
entry descriptor or info block levels (levels 2 & 3). For example, it is not required that a (sub)unit be
sophisticated enough to allow one controller to have read/write access to entry 2, and a separate controller
to simultaneously have read/write access to entry 7 in the same list. It is sufficient and recommended to
allow access control only at the list descriptor level.

9.2.2 Access rules

When a descriptor or info block is accessed, the rules below shall be followed. These rules are intended to
help the target maintain a fair and stable environment for itself and external controllers.

9.2.2.1 Access rules for opening descriptors and info blocks

1) General open rule: A descriptor can be accessed only for the controller that opened it. If a second
controller wishes to access a descriptor that has been opened by a first controller, the second
controller must still issue an OPEN DESCRIPTOR control command.

2) Multiple read-only opens: If a descriptor or info block is closed or has only been opened for read
access, a (sub)unit may accept any number of OPEN DESCRIPTOR control commands with a
subfunction of read-open as long as the (sub)unit is able to accommodate additional controllers
accessing for read-only.

AV/C Descriptor Mechanism Specification Version 1.0 TA Document 1999025, July 23, 2001

Page 62 Copyright  2001, 1394 Trade Association. All rights reserved.

3) Only one write-open accepted: If a descriptor or info block is closed or has only been opened for
read access, a (sub)unit may accept a single OPEN DESCRIPTOR control command or OPEN
INFO BLOCK control command with a subfunction of write-open. If accepted, this open
operation for write access forces any existing read-only opens of itself and all of its embedded
entries or info blocks, and its enclosing descriptor(s) to be closed. Though it is possible for
multiple controllers to access different entries in a list, or info blocks in an entry, any attempt to do
the following shall be REJECTED by the (sub)unit:

a) While one controller has write access to a list, another controller attempts to gain access
(write or read) to any of its entries or info blocks within that list.

b) While one controller has write access to an entry, another controller attempts to gain access
(write or read) to any of its info blocks within it.

c) While one controller has write access to an entry, another controller attempts to gain access
(write or read) to its list.

d) While one controller has write access to an info block, another controller attempts to gain
access (write or read) to its enclosing entry or list.

4) Accept identical open commands: The (sub)unit shall always accept a command from a
controller to close a descriptor, even when the controller has not opened or has already closed the
descriptor. If a controller has opened a descriptor or info block for read or write access, the target
shall accept a request to open the descriptor or info block for the same access by the same
controller. However, if a controller has opened a descriptor or info block for write access, the
target shall reject any requests to open the descriptor or info block for read access by the same
controller.

5) Write-open enclosing descriptor before adding or deleting: If a controller intends to add or
delete an entry, then it shall first gain write access control to its list. If a controller intends to add
or delete a child list, then it shall first gain write access control to its parent entry’s list.

9.2.2.2 Access rules for writ ing descriptors and info blocks

1) WRITE DESCRIPTOR and WRITE INFO BLOCK commands shall write “0” to data locations
that are reserved if writing to an area that includes them. Any attempt to write other than “0” to
them shall be REJECTED.

2) WRITE DESCRIPTOR and WRITE INFO BLOCK commands that attempt write data that is out
of range or is otherwise invalid according to this or the target’s (sub)unit specification shall be
REJECTED.

3) An entry descriptor can be created using CREATE DESCRIPTOR commands. An entry descriptor
can be written using WRITE DESCRIPTOR commands with a descriptor specifier for the entry
descriptor. Attempt to create or write an entry descriptor using WRITE DESCRIPTOR commands
with a descriptor specifier for the list descriptor should be REJECTED.

4) The non_info_block_length field can be created or written by WRITE DESCRIPTOR commands
only when it attempts to write an area that includes both the non_info_block_length field and the
whole non info block data.

5) An info block can be created or written by WRITE DESCRIPTOR commands only when it
attempts to write to an area that includes the whole info block structure (from compound_length
field to secondary_fields).

6) Each field in a descriptor structure can be read/write(R/W), read/write/ignore(R/W/I)
read/ignore(R/I) or read(R) as indicated in the Controller Read/Write column. See section 5.4 for
more information about Controller Read/Write. The following table defines the target behavior

TA Document 1999025, July 23, 2001 AV/C Descriptor Mechanism Specification Version 1.0

 Copyright  2001, 1394 Trade Association. All rights reserved. Page 63

when a controller sends WRITE DESCRIPTOR and WRITE INFO BLOCK control commands. It
is recommend that (sub)unit specifications define Controller Read/Write for fields in descriptor
and info block structures that are not defined in this specification.

Table 9.2 –Controller Read/Write attribute and target behaviors

Controller Read/Write Rule

read/write(R/W) If ACCEPTED, the target changes these fields as specified in the
command frame.

read/write/ignore(R/W/I) If ACCEPTED, the target changes these fields as specified in the
command frame, changes them to other values, or does not
update them.

For example, the target may round to the values to the acceptable
values, truncate the character strings, or the target
implementation or state does not allow to change the fields.

read/ignore (R/I) If ACCEPTED, the target does not change these fields. For
example, those fields that indicate the capabilities of the target
and are located in the writeable area may be R/I.

Note that replace and insert subfunctions may write these fields.

read(R) The target shall return a response of REJECTED when the
command frame attempts to write an area that includes these
fields. For example, those fields that indicate the capabilities of
the target may be R.

Note that replace and insert subfunctions may write these fields.

NOTE — The target shall return the subfunction value in the response frame according to the result of write
operation. See Table 9.26 and Table 9.38.

9.2.2.3 Access rules for closing descriptors and info blocks

1) Close read or write-enabled descriptor only by opener: If a descriptor or info block is open for
read or write access by a controller, only that controller can close it for itself.

2) Accept identical closure: If a controller has not opened a descriptor or info block, a (sub)unit
shall accept OPEN DESCRIPTOR or OPEN INFO BLOCK commands with close subfunction
from the same controller to close the descriptor or info block. However, if other controllers have
opened the descriptor or info block, the (sub)unit shall keep the descriptor or info block open for
them.

3) Force-closure: A descriptor or info block that is open for write may be force-closed by a high
priority command, by a request from a front panel, or at the (sub)unit’s convenience. The
controller shall construct its write operations carefully so that if a force-closure occurs, descriptor
integrity is not compromised. After a force-closure, if a controller regains access to the descriptor,
it should assume the descriptor has changed as a result of the force-closure.

4) Atomic operations: All descriptor and info block commands executions shall be atomic – that is,
force closure shall not occur during the execution of any one descriptor command. For example, if
a WRITE DESCRIPTOR control command writes five bytes, all five bytes must be written before
a force-closure. If a bus reset occurs during the execution of a command, any changes to the
descriptor shall be canceled.

AV/C Descriptor Mechanism Specification Version 1.0 TA Document 1999025, July 23, 2001

Page 64 Copyright  2001, 1394 Trade Association. All rights reserved.

5) Close when done: If a controller intends to read or write to a descriptor or info block, and it is
able to gain access to that descriptor or info block, then it shall relinquish control of that same
descriptor or info block when it is finished. Controllers are strongly recommended to keep
descriptors and info block open (for read only or read/write access) only for the duration that
access is needed, and to relinquish access as soon as possible.

9.2.2.4 Summary of the access rules for opening and closing descriptors
and info blocks (informative)

The table below indicates the responses (A = ACCEPTED or R = REJECTED) received when a controller
sends various OPEN DESCRIPTOR control commands under various open states of the descriptor.

Descriptor Z is a descriptor or info block on a target that controllers X and Y may be accessing. The
columns indicate the current state of the descriptor Z as would be returned in the status field of the response
of OPEN DESCRIPTOR status command, and the columns are also divided by which controller is
presently opening the descriptor.

Controller X will receive the response indicated by the crossing cell corresponding to the subfunction of the
OPEN DESCRIPTOR control command that it sends.

Table 9.3 – Descriptor access rule summary

Current state of the descriptor Z
(Value of the status field in the response of

OPEN DESCRIPTOR status command)
(Currently opened by X, Y, or none)

CLOSE READ OPEN
(accept more

read-only req.)

READ OPEN
(reject more

read-only req.)

WRITE OPEN

00 01 11 33

OPEN DESCRIPTOR
control command from

controller X

none X X, Y Y X X, Y Y X Y
OPEN DESCRIPTOR

(CLOSE)
A A A A A A A A A

OPEN DESCRIPTOR
(READ OPEN)

A A A A A A R R R

OPEN DESCRIPTOR
(WRITE OPEN)

A A A A A A A A R

9.2.2.5 Reset rule

1) Closed after reset: After a power reset or serial bus reset (see reference [R4] for details), the
descriptors and info blocks of all (sub)units shall be in a closed state.

9.2.2.6 Time-out rules

1) Timeout between OPEN and READ/WRITE: When the descriptor or info block has been
opened for read/write access, a time out period should be measured between the (sub)unit’s
response to the initial OPEN DESCRIPTOR/INFO BLOCK control command (read/write
subfunction) and the first ensuing READ DESCRIPTOR/INFO BLOCK control command or
WRITE DESCRIPTOR/INFO BLOCK control command issued by the controller. If the READ
DESCRIPTOR/INFO BLOCK control command or WRITE DESCRIPTOR/INFO BLOCK
control command is not issued before the time out period, then the descriptor should be closed by

TA Document 1999025, July 23, 2001 AV/C Descriptor Mechanism Specification Version 1.0

 Copyright  2001, 1394 Trade Association. All rights reserved. Page 65

the (sub)unit for read/write access. The time-out period is recommended to be longer than one
minute.

2) Timeout between consecutive READs and WRITEs: The (sub)unit should also measure the
time out between its response to a READ DESCRIPTOR/INFO BLOCK control command or
WRITE DESCRIPTOR/INFO BLOCK control command, and the subsequent READ
DESCRIPTOR/INFO BLOCK control command or WRITE DESCRIPTOR/INFO BLOCK
control command issued from the controller. If the controller fails to either close the descriptor or
issue another READ DESCRIPTOR/INFO BLOCK control or WRITE DESCRIPTOR/INFO
BLOCK control command within the time out period, then the (sub)unit should close the
descriptor or info block for read/write access. The descriptor is then available to be opened again,
by any controller. The time-out period is recommended to be longer than one minute.

NOTE — These time out measurements are measured per controller; when measuring the time between a response
and a subsequent command, it is important to remain consistent about which controller interaction is being measured.

9.2.3 Unit/subunit requirements

1) keep node_ID of openers: The unit/subunit shall maintain the node_ID about each controller that
opens a descriptor or info block.

2) verify node_ID controllers: When a descriptor is open, the unit/subunit shall check the node_ID
of all received descriptor control commands to ensure that the controller has rights to the
descriptor.

3) Update length and “number_of…” : The unit/subunit shall update the fields shown in the table
below as data is added or removed from them. Other fields of descriptors may be updated by the
target or by the controller according to the unit or the subunit-type specification. In case the target
updates these fields reflecting the result of CREATE DESCRIPTOR, WRITE DESCRIPTOR or
WRITE INFO BLOCK control command, the target shall not close the descriptor or the info
block.

Table 9.4 – Fields maintained by target

 Field Name in descriptor and info block structure

(sub)unit descriptor (sub)unit_identifier_descriptor_length

number_of_root_lists

unit_information_length or subunit_type_dependent_information_length

general_unit_info_length1

manufacturer_dependent_information_length

list descriptor list_descriptor_length

number_of_entry_descriptors

list_specific_information_length

non_info_block_length2

entry descriptor entry_descriptor_length

entry_specific_information_length

non_info_block_length2

info block Compound_length2

primary_field_length2
1 Unit descriptor

AV/C Descriptor Mechanism Specification Version 1.0 TA Document 1999025, July 23, 2001

Page 66 Copyright  2001, 1394 Trade Association. All rights reserved.

2 These fields are written by a controller using WRITE DESCRIPTOR control commands. See clause 9.2.2.2 about
the access rules.

9.2.4 Legacy device behavior

The rules below were created to define the behavior of legacy devices when they receive descriptor
commands from devices using a future version of this document as a baseline.

Table 9.5 – Rules for reserved fields

row Situation Rule

1 A new controller writes data other than “0”
to a descriptor field that is reserved in a
legacy target.

The legacy target should return REJECTED.

2 A legacy controller reads a descriptor in a
new target that contains data that was
previously reserved.

The legacy controller shall ignore the new data.

NOTE — Any extensions using reserved fields to affect the meanings of other fields shall not be made.

Table 9.6 – Rules for reserved values

row Situation Rule

1 New controller writes previously reserved
values to a descriptor in a legacy target.

The legacy target should return an AV/C
response frame of REJECTED.

2 A legacy controller reads a previously
reserved field value in a descriptor of a new
target.

This is implementation dependent. It shall not be
considered as an error.

TA Document 1999025, July 23, 2001 AV/C Descriptor Mechanism Specification Version 1.0

 Copyright  2001, 1394 Trade Association. All rights reserved. Page 67

9.3 CREATE DESCRIPTOR command

The CREATE DESCRIPTOR command is a unit/subunit command and manages the creation of descriptor
structures. This command supports four ways to create descriptor:

1) Create a new root list from the subunit identifier descriptor.

2) Create a new child list from an existing parent entry.

3) Create a new entry in a list (See footnote2).

4) Create a new entry in a list and a child list from that entry.

All entry descriptors are created by entry_type, and all list descriptors are created by list_type. When an
entry is created, whether it has an object ID is determined by its list’s has_object_ID attribute. When a list
is created, the subunit is responsible for assigning it a unique list ID and whether its entries contain
object_IDs is list_type dependent. Refer to the subunit-type specific documentation for how particular types
of lists and entries are created.

The CREATE DESCRIPTOR command supports descriptor specifiers 0016, 1116, 2016, and 2216. See
section 8.2 and the sections below for the combination of descriptor specifiers in detail.

9.3.1 CREATE DESCRIPTOR control command

The CREATE DESCIPTOR control command causes the subunit to create a specified type of descriptor
structure in a specified location. The control command has the following format:

 length ck msb lsb
opcode 1 √ CREATE DESCRIPTOR (0C16)

operand[0] 1 √ Result
operand[1] 1 √ subfunction_1
operand[2] 1 √ Reserved
operand[3]

: see1 see2 subfunction_1_specification
:

1 The size of this field depends on the subfuntion_1 value, and is described below.
2 Refer to the figures of each subfunction_1_specification field below.

Figure 9.3 – CREATE DESCRIPTOR control command frame

9.3.1.1 Field definit ions

result: The result field shall be set to FF16 in the command frame by the controller. In the response frame,
the subunit shall update the field with a result code according to Table 9.8 and Table 9.9 on page 69.

subfunction_1: The subfunction_1 field specifies the descriptor to create:

2 In legacy devices, the WRITE DESCRIPTOR control command, subfunction = insert or partial replace commands
may have been used to achieve this same functionality.

AV/C Descriptor Mechanism Specification Version 1.0 TA Document 1999025, July 23, 2001

Page 68 Copyright  2001, 1394 Trade Association. All rights reserved.

Table 9.7 – Subfunction_1 field in command frame

subfunction_1 Meaning

0016 Create a new root list, child list, or entry
without a child list

0116 Create a new entry and its child list
all other values Reserved for future specification

To discern the kind of descriptor to create when subfunction_1 = 0016, the subunit shall inspect the
subfunction_1_specification fields for the descriptor_specifier type combination used.

reserved: The reserved field shall be treated according to the rules defined in reference [R9].

subfunction_1_specification: The subfunction_1_specification fields have formats that depend on the
subfunction_1 value.

For subfunction_1 = 0016, the subfunction_1_specification field has the following format:

 length ck msb lsb
operand[3]

: see1 √ descriptor_specifier_where
: see2
:
: see1 √ descriptor_specifier_what
: see2

1 The length of this field depends on the length of the descriptor specifier used.
2 Only its descriptor_specifier_type should be evaluated.

Figure 9.4 – Subfunction_1_specification for subfunction_1 = 0016

descriptor_specifier_where: The descriptor_specifier_where field is a standard descriptor_specifier
structure, as defined in section 8.1 “Descriptor specifier” on page 50, and defines from where the new
descriptor is created.

descriptor_specifier_what: The descriptor_specifier_what field is also a standard descriptor_specifier
structure, and it specifies the entry_type or list_type to be created.

For subfunction_1 = 0116 , the subfunction_1_specification field has the following format:

 length ck msb lsb
operand[3]

: see1 √ descriptor_specifier_where
: see2
:
: see1 √ descriptor_specifier_what_1
: see2
:
: see1 √ descriptor_specifier_what_2
: see2

1 The length of this field depends on the length of the descriptor specifier used.
2 Only its descriptor_specifier_type should be evaluated.

Figure 9.5 – Subfunction_1_specification for subfunction_1 = 0116

descriptor_specifier_where: The descriptor_specifier_where field is a standard descriptor_specifier
structure, specifying from where the subunit creates the new descriptors.

TA Document 1999025, July 23, 2001 AV/C Descriptor Mechanism Specification Version 1.0

 Copyright  2001, 1394 Trade Association. All rights reserved. Page 69

descriptor_specifier_what_1: The descriptor_specifier_what_1 field is also a standard
descriptor_specifier structure, and it specifies the entry_type to be created.

descriptor_specifier_what_2: The descriptor_specifier_what_2 field is also a standard
descriptor_specifier structure, and it specifies the list_type of the child list to be created.

NOTE — When subfunction_1 = 0116, the subunit shall return an ACCEPTED response to the command only when
both descriptors are created. If there is a failure creating both descriptors, then the subunit shall return a REJECTED
response to the command, and the descriptors shall remain in their original state.

9.3.1.2 CREATE DESCRIPTOR control command responses

The following table shows the returned field values in REJECTED, INTERIM, and ACCEPTED response
frames when subfunction_1 = 0016 in the command frame.

Table 9.8 – Field values in the CREATE DESCRIPTOR control command: REJECTED, INTERIM and
ACCEPTED response frames for subfunction_1 = 0016

Fields Command Response

 REJECTED INTERIM ACCEPTED

result FF16 FF16 FF16 0016

subfunction_1 0016 ← ← ←

descriptor_specifier
_where

Descriptor specifier of the UID,
SID or an entry

← ← ←1

descriptor_specifier
_what

Descriptor specifier of the new
list or entry

← ← ←2

1 When appending an entry using FF, the response frame shall return the resultant object position.
2 When creating a list, the accepted response frame shall return the list ID using descriptor_specifier 1016.

← means “same as the command frame”

The following table shows the returned field values in REJECTED, INTERIM, and ACCEPTED response
frames when subfunction_1 = 0116 in the command frame.

AV/C Descriptor Mechanism Specification Version 1.0 TA Document 1999025, July 23, 2001

Page 70 Copyright  2001, 1394 Trade Association. All rights reserved.

Table 9.9 – Field values in the CREATE DESCRIPTOR control command: REJECTED, INTERIM and
ACCEPTED response frames for subfunction_1 = 0116

Fields Command Response

 REJECTED INTERIM ACCEPTED

result FF16 FF16 FF16 0016

subfunction_1 0116 ← ← ←

descriptor_specifier
_where

Descriptor specifier of an entry ← ← ←

descriptor_specifier
_what_1

Descriptor specifier of the new
entry

← ← ←1

descriptor_specifier
_what_2

Descriptor specifier of the new
list

← ← ←2

1 When appending an entry using FF, the response frame shall return the resultant object position using
descriptor_specifier 2016.

2 The accepted response frame shall return the list ID using descriptor_specifier 1016.
← means “same as the command frame”

9.3.1.3 Creating descriptors

When a descriptor is created using the CREATE DESCRIPTOR control command, the structure of the
newly created descriptor depends on the list_types and entry_types that are created, which are given in each
subunit-type specification. As new entries and lists are created, the entry_type and list_type shall determine
the info blocks and other data that are present in the new descriptors. For details, please refer to the subunit-
type specification.

9.3.1.3.1 Creating a root l ist

A subunit may or may not support creating a root list. To determine this, use the CREATE DESCRIPTOR
specific inquiry command with subfunction_1 = 0016 and the descriptor specifiers shown in Table 9.10
below.

To create a new root list from an external controller, issue CREATE DESCRIPTOR control command,
subfunction_1 = 0016 using the descriptor specifier types shown in Table 9.10 below. When creating a root
list, all other descriptor specifier type combinations are invalid.

Table 9.10 – Descriptor specifier types for creating a new root list

 descriptor_specifier_where descriptor_specifier_what

descriptor_specifier_type 0016
(Subunit identifier descriptor)

1116
(List descriptor specified by list type)

The controller shall write-open the subunit identifier descriptor prior to issuing the CREATE
DESCRIPTOR control command for the new root list descriptor and the subunit shall be responsible for
updating the UID or SID while it is open. The subunit shall append the new list ID to the end of the root list
IDs in the UID or SID. The controller can then read this new list ID to access the new descriptor. After the
UID or SID closes, the subunit may reorder the root_list_ID entries as appropriate, such as to group lists
IDs of the same list type.

The new root list descriptor shall be created as follows:

TA Document 1999025, July 23, 2001 AV/C Descriptor Mechanism Specification Version 1.0

 Copyright  2001, 1394 Trade Association. All rights reserved. Page 71

Address length,
bytes

Contents

00 0016 2 list_descriptor_length = 0616 + list_specific_information_length +
00 0116 bytes for default entries
00 0216 1 list_type = type in descriptor_specifier_what
00 0316 1 attributes = 000x 1000
00 0416 2 list_specific_information_length = I
00 0516
00 0616 i default list_specific_information

:
: 2 number_of_entry_descriptors = j
:
: – default entry_descriptor[0]
: – :
: – default entry_descriptor[j-1]

Figure 9.6 – A new root list created by the CREATE DESCRIPTOR control command

After the CREATE DESCRIPTOR control command, the new list descriptor shall be left in the write-open
state.

The value of “x” in the attributes field (has_object_ID) depends on the list_type definition. Also note that
the attributes field may be extended, depending on the generation_ID of the target.

A subunit may not create default list_specific_information, in which case, the
list_specific_information_length field shall be 0016 and the default list_specific_information field shall not
exist.

After the CREATE DESCRIPTOR control command, the new root list descriptor and the subunit identifier
descriptor shall remain open.

A subunit-type specification may create one or more default entries and info blocks in the new list.

9.3.1.3.2 Creating a child l ist from an existing entry

A subunit may or may not support creating a child list from an existing entry. To determine this, use
CREATE DESCRIPTOR specific inquiry command with subfunction_1 = 0016 and the descriptor specifiers
shown in Table 9.11 below.

A subunit can create a new child list only from an entry that doesn’t already have a child list. To create a
new child list, issue CREATE DESCRIPTOR control command with subfunction_1 = 0016 and the
descriptor specifier types shown in Table 9.11 below. All other descriptor specifier type combinations for
creating a child list are invalid.

AV/C Descriptor Mechanism Specification Version 1.0 TA Document 1999025, July 23, 2001

Page 72 Copyright  2001, 1394 Trade Association. All rights reserved.

Table 9.11 – Specifier types for creating a child list from and existing entry

 descriptor_specifier_where descriptor_specifier_what

descriptor_specifier_type 2016
(Entry descriptor specified by

position)

1116
(List descriptor specified by list

type)

If the descriptor specified by descriptor_specifier_where does not exist, or if it is already open by another
controller, or if it already contains a child_list_ID, the command shall be REJECTED.

The controller shall open the parent entry’s list descriptor for write prior to creating the new child list
descriptor. The subunit is responsible for updating the parent entry and its list while they are open. The
controller can then read the child_list_ID data to determine the list ID of the new list.

The structure of a new child list is identical to that of the new root list shown in Figure 9.6 – A new root list
created by the CREATE DESCRIPTOR control command.

Whether the child list’s entries will contain object_IDs is determined by the list_type of the created list.

A subunit may not create default list_specific_information, in which case, the
list_specific_information_length field shall be 0016 and the list_specific_information field shall not exist.

After the CREATE DESCRIPTOR control command, the parent entry’s list and the new child list shall
remain open.

9.3.1.3.3 Creating an entry in a l ist

A subunit may or may not support creating an entry in an existing list. To determine this, use the CREATE
DESCRIPTOR specific inquery command with subfunction_1 = 0016 and the descriptor specifiers shown in
Table 9.12 below.

To create a new entry in a list, the controller must first open the entry’s list descriptor using the OPEN
DESCRIPTOR control command with subfunction = 0316 (write). It then issues CREATE DESCRIPTOR
control command with subfunction_1 = 0016 and the descriptor specifier types shown in Table 9.12 below.
All other descriptor specifier type combinations for creating an entry are invalid.

Table 9.12 – Descriptor specifier types for creating an entry descriptor in an existing list

 descriptor_specifier_where descriptor_specifier_what

descriptor_specifier_type 2016
(Entry descriptor specified by

position in a list)

2216
(Entry descriptor specified by

entry type)

If the list of the descriptor specified by descriptor_specifier_where is already opened for write by another
controller, the command shall be REJECTED.

When an entry is newly created by the CREATE DESCRIPTOR control command, the subunit inserts the
entry at the position specified by descriptor_specifier_where of the list. As the insertion is made, the entries
following the specified position (if any) are automatically shifted one by one. If no entries exist in the list,
specify all 0016 or all FF16 for the position. To append an entry to the end of a list, specify the value in the
number_of_entry_descriptors field or all FF16 for the position. If a position is specified that is greater than
the number of entries, then the command shall be rejected. The subunit is responsible for incrementing the

TA Document 1999025, July 23, 2001 AV/C Descriptor Mechanism Specification Version 1.0

 Copyright  2001, 1394 Trade Association. All rights reserved. Page 73

number_of_entry_descriptors field of the list descriptor and its overall length in order to accommodate the
new entry.

The new entry descriptor shall be created as follows:

Address Length,
bytes

Contents

00 0016 2 entry_descriptor_length = 0416 +
00 0116 size_of_object_ID1 + entry_specific_information_length
00 0216 1 entry_type = type in descriptor_specifier_what
00 0316 1 attributes = “0000 1000”

:
: see2 object_ID (optional) = all 0016
:
:
: 2 entry_specific_information_length = i
:
: i default entry_specific_information

1 This value is included only when the list contains entries with object IDs
2 The length of this field is determined by the size_of_object_ID field in the (sub)unit identifier descriptor.

Figure 9.7 – A new entry without a child list created by CREATE DESCRIPTOR control command

The size_of_object_ID that is found in the subunit identifier descriptor determines the length of the
object_ID field. Whether the entry contains an object_ID is determined by its list’s has_object_ID attribute.
The has_child_ID attribute shall be 0.

A unit or subunit may not create default entry_specific_information, in which case, the
entry_specific_information_length field shall be 0016 and the entry_specific_information field shall not
exist.

After the CREATE DESCRIPTOR control command, the new entry’s list descriptor shall remain open and
the controller may want to issue some WRITE DESCRIPTOR commands on the new entry to complete the
creation process.

9.3.1.3.4 Creating a new entry and its child l ist

A subunit may or may not support creating an entry and its child list from an existing list. To determine this,
use CREATE DESCRIPTOR specific inquiry command with subfunction_1 = 0116 and the descriptor
specifiers shown in Table 9.13 below.

To create a new entry and its child list, the controller must first open the list where the entry will be added
using the OPEN DESCRIPTOR control command with subfunction = 0316 (write). The controller shall then
issues CREATE DESCRIPTOR control command with subfunction_1 = 0116 with the specifier types
shown in Table 9.13 below. All other specifier type combinations for creating a new entry and its child list
are invalid.

AV/C Descriptor Mechanism Specification Version 1.0 TA Document 1999025, July 23, 2001

Page 74 Copyright  2001, 1394 Trade Association. All rights reserved.

Table 9.13 – Descriptor specifier types for creating a new entry and its child list

 descriptor_specifier_
where

descriptor_specifier_
what_1

descriptor_specifier_
what_2

descriptor_
specifier_type

2016
(Entry descriptor

specified by position in a
list)

2216
(Entry descriptor specified

by entry type)

1116
(List descriptor specified by

list type)

If the list of the descriptor specified by descriptor_specifier_where is already opened for write by another
controller, the command shall be rejected.

When an entry is newly created by the CREATE DESCRIPTOR control command, the subunit inserts the
entry at the position specified by descriptor_specifier_where of the list. As the insertion is made, the entries
following the specified position (if any) are automatically shifted one by one. If no entries exist in the list,
specify all 0016 or all FF16 for the position. To append an entry to the end of the list, specify the value in the
number_of_entries field or all FF16 for the position. If a position is specified that is greater than the number
of entries, then the command shall be rejected.

The subunit shall be responsible for adding the new entry to the list. After creating the new entry, the
controller can then read the new entry by object position to determine the new child_list_ID.

The new entry descriptor with a child list shall be created as follows:

Address Length,
bytes

Contents

00 0016 2 entry_descriptor_length = 0416 + size_of_object_ID
00 0116 + size_of_list_ID + entry_specific_information_length
00 0216 1 entry_type = type in descriptor_specifier_what_1
00 0316 1 attributes = “0010 1000”

:
: see1 child_list_ID =
: Unique value assigned by subunit
:
: see2 object_ID (optional) = all 016
:
:
: 2 entry_specific_information_length = i
:
: i default entry_specific_information

1 The length of this field is determined by the size_of_list_ID field in the (sub)unit identifier descriptor.
2 The length of this field is determined by the size_of_object_ID field in the (sub)unit identifier descriptor.

Figure 9.8 – A new entry with a child list created by CREATE DESCRIPTOR control command

Whether the new entry contains an object_ID is determined by its list’s has_object_ID attribute. The
has_child_ID attribute shall be set to 1.

A unit or subunit might not create default entry_specific_information, in which case, the
entry_specific_information_length field shall be 0016 and the entry_specific_information field shall not
exist.

The new child list descriptor shall be created as follows:

TA Document 1999025, July 23, 2001 AV/C Descriptor Mechanism Specification Version 1.0

 Copyright  2001, 1394 Trade Association. All rights reserved. Page 75

Address length Contents

00 0016 2 list_descriptor_length = 0616 +
00 0116 list_specific_information_length + bytes for default entries
00 0216 1 list_type = type in descriptor_specifier_what_2
00 0316 1 attributes = “000x 1000”
00 0416 2 list_specific_information_length = I
00 0516
00 0616 i default list_specific_information

: 2 number_of_entry_descriptors = j
:
 see1 default entry_descriptor[0]
 …
 see1 default entry_descriptor[j-1]

1 The size of these fields = 2 + entry_descriptor_length

Figure 9.9 – A new list created by CREATE DESCRIPTOR control command

The has_object_ID value in the newly created list is determined by its list_type.

A unit or subunit might not create default list_specific_information, in which case, the
list_specific_information_length field shall be 0016 and the list_specific_information field shall not exist.

Depending on the list type, the new list may be created with default entries.

After the CREATE DESCRIPTOR control command, both descriptors shall remain open. No entry
descriptors shall be created in the new list by the (sub)unit. While both descriptors remain open, the
controller may want to write to them before closing them.

AV/C Descriptor Mechanism Specification Version 1.0 TA Document 1999025, July 23, 2001

Page 76 Copyright  2001, 1394 Trade Association. All rights reserved.

9.4 OPEN DESCRIPTOR command

The OPEN DESCRIPTOR command is a unit/subunit command and is used to manage the access of
descriptors in target devices.

The OPEN DESCRIPTOR command supports descriptor specifiers 0016, 1016, 1116, 2016, 2116, 2316, and
8016 – BF16. See section 8.2 and the sections below for details.

9.4.1 OPEN DESCRIPTOR control command

The OPEN DESCRIPTOR control command is used to gain read-only or write-enabled access to a
descriptor within a target. It is also used to relinquish that access. The format of the OPEN DESCRIPTOR
control command is shown by the figure below:

 bytes ck msb lsb
opcode 1 √ OPEN DESCRIPTOR (0816)

Operand[0]
Operand[1] see1 √ descriptor_specifier

: see2
: 1 √ subfunction
: 1 √ reserved

1 The size of this field depends on the descriptor specifier used.
2 Only its descriptor_specifier_type should be evaluated.

Figure 9.10 – OPEN DESCRIPTOR control command frame

9.4.1.1 Field definit ions

descriptor_specifier: The descriptor_specifier operand in the command frame specifies which, among
possibly many, of the structures that the controller wants to access. The response frame contains the same
information as the command frame. For more information about the descriptor specifier, see section 8.1
“Descriptor specifier” on page 50.

NOTE — If a list_type descriptor_specifier is supported and used to open a list, and if there are multiple lists of the
same type, then an arbitrary list will be opened.

subfunction: The subfunction operand determines the operation performed by the target, as defined by the
table below:

Table 9.14 – Values of the subfunction operand

Subfunction Action

0016 Close: Relinquish use of the descriptor.

0116 Read open: Open the descriptor for read-only access.

0316 Write open: Open the descriptor for read or write access.

All others Reserved

reserved: The reserved field shall be treated according to the rules defined in reference [R9].

TA Document 1999025, July 23, 2001 AV/C Descriptor Mechanism Specification Version 1.0

 Copyright  2001, 1394 Trade Association. All rights reserved. Page 77

9.4.1.2 OPEN DESCRIPTOR control command responses

The following table shows the REJECTED, INTERIM, and ACCEPTED responses to the OPEN
DESCRIPTOR control command.

Table 9.15 – Field values in the OPEN DESCRIPTOR control command: REJECTED, INTERIM and
ACCEPTED response frames

Fields Command Response

 REJECTED INTERIM ACCEPTED

descriptor_specifier The descriptor specifier of the
descriptor to open or close

← ← ←

subfunction see Table 9.14 ← ← ←

reserved 0016 ← ← ←

← means “same as the command frame”

If the OPEN DESCRIPTOR control command returns a REJECTED response, use the OPEN
DESCRIPTOR status command to determine why.

AV/C Descriptor Mechanism Specification Version 1.0 TA Document 1999025, July 23, 2001

Page 78 Copyright  2001, 1394 Trade Association. All rights reserved.

9.4.2 OPEN DESCRIPTOR status command

OPEN DESCRIPTOR may also be used as a STATUS command to inquire about the current open
condition of the descriptor. It can be issued on an open or closed descriptor.

The format of the OPEN DESCRIPTOR status command is shown below:

 bytes ck msb lsb
opcode 1 √ OPEN DESCRIPTOR (0816)

Operand[0]
Operand[1] see1 √ descriptor_specifier

: see2
: 1 √ status = FF16
: 1 √ reserved
: 2 √ node_ID = FF FF16
:

1 The size of this field depends on the descriptor specifier used.
2 Only its descriptor_specifier_type should be evaluated.

Figure 9.11 – OPEN DESCRIPTOR status command frame

9.4.2.1 Field definit ions

descriptor_specifier: The descriptor_specifier operand specifies which, among possibly many, of the
structures that the controller wants to access. For more information about the descriptor specifier, see
section 8.1 “Descriptor specifier” on page 50.

status: The status field is set to FF16 in the command frame. In the STABLE response frame, the status
field indicates the current status of the descriptor. See Table 9.17 on page 79 for more information. In the
IN TRANSITION response frame, the status field indicates the target’s expected status of the open
operation.

reserved: The reserved field shall be treated according to the rules defined in reference [R9].

node_ID: The node_ID is set to FF FF16 in the command frame. In the STABLE response frame with
status = 3316, the unit or subunit shall update the node_ID operand. See Table 9.17 on page 79 for more
information.

9.4.2.2 OPEN DESCRIPTOR status command responses

The following table shows the OPEN DESCRIPTOR status response frame field values for the STABLE
and REJECTED responses.

TA Document 1999025, July 23, 2001 AV/C Descriptor Mechanism Specification Version 1.0

 Copyright  2001, 1394 Trade Association. All rights reserved. Page 79

Table 9.16 – Field values in the OPEN DESCRIPTOR status command: REJECTED, IN TRANSITION
and STABLE response frames

Fields Command Response

 REJECTED IN
TRANSITION

STABLE

descriptor_specifier The descriptor specifier of the
descriptor to check open status

← ← ←

status FF16 ← see Table
9.17

see Table
9.17

reserved 0016 ← ← ←

node_ID FF16 ← see Table
9.18

see Table
9.18

← means “same as the command frame”

The following table shows the values for status and their meaning.

Table 9.17 – status field values in the OPEN DESCRIPTOR status command: STABLE response
frame

Status Meaning

0016 Ready for open: The descriptor specified by descriptor_specifier is closed and
can be accessed. No controllers currently have access (either read or write).

0116 Read opened: The descriptor or its list is open for read-only access to its data
by one or more controllers, and is able to accept additional read-only open
requests.

0416 Non Existent: No descriptor specified by descriptor_specifier exists.

0516 List-only (deprecated): Access control for individual entries in a list is not
supported - the controller must obtain access to the entire list. In this case, a
NOT IMPLEMENTED response will be returned, therefore, this value shall not
be used.

1116 At capacity: The descriptor is open for read-only access to the data, and is
unable to accept any additional read-only open requests.

3316 Write opened: The descriptor or its list is open for read or write access to the
data. No access (for read-only or for read or write) by other controllers is
allowed.

The following table describes the value for node_ID in the response frame.

AV/C Descriptor Mechanism Specification Version 1.0 TA Document 1999025, July 23, 2001

Page 80 Copyright  2001, 1394 Trade Association. All rights reserved.

Table 9.18 – node_ID values in the response frame

Status Value of node_ID

3316 Controller with write access: When the descriptor is open for write access by a
controller, the unit or subunit shall update this field to contain the node ID of the
controller.

all other values The value of this field is not changed in the response frame; it remains as
FF FF16.

If for some reason the target cannot return any of the status responses in the STABLE response frame, then
the target shall return a REJECTED response. Under this condition, the descriptor is not presently
accessible.

TA Document 1999025, July 23, 2001 AV/C Descriptor Mechanism Specification Version 1.0

 Copyright  2001, 1394 Trade Association. All rights reserved. Page 81

9.4.3 OPEN DESCRIPTOR notify command

The OPEN DESCRIPTOR command may also be used as a NOTIFY command when controllers wish to
be advised of a possible change of status of the descriptor. A controller may want to know several things
about the status of a descriptor:

1) If the controller is waiting for a descriptor to be available for opening, it may want to know when
the descriptor is free to access. The controller then should determine if the data it cares about has
changed.

2) If the controller is waiting for a descriptor to be available for opening, it may want to know if
another controller deleted the descriptor.

The format of the NOTIFY command is the same as STATUS command, but with a ctype value of
NOTIFY.

 bytes ck msb lsb
opcode 1 √ OPEN DESCRIPTOR (0816)

operand[0]
operand[1] see1 √ descriptor_specifier

: see2
: 1 √ status = FF16
: 1 √ Reserved
: 2 √ node_ID = FF FF16
:

1 The size of this field depends on the descriptor specifier used.
2 Only its descriptor_specifier_type should be evaluated.

Figure 9.12 – OPEN DESCRIPTOR notify command frame

9.4.3.1 Field definit ions

descriptor_specifier: In the command frame, the descriptor_specifier operand specifies which, among
possibly many, of the structures that the controller wants access notification. For more information about
the descriptor specifier, see section 8.1 “Descriptor specifier” on page 50.

status: In the command frame, status is set to FF16. In the INTERIM response frame, status contains the
present access state of the descriptor specified by the descriptor_specifier operand. If the response is
CHANGED, status contains the new access state of the descriptor specified by the descriptor_specifier
operand.

node_ID: The controller shall set this field to FF FF16 in the command frame, and the target shall update it
with the node ID in the INTERIM and CHANGED response frames when status = 3316.

9.4.3.2 OPEN DESCRIPTOR notify command responses

The following table shows the OPEN DESCRIPTOR notify response frame field values for the
REJECTED, INTERIM, and CHANGED responses.

AV/C Descriptor Mechanism Specification Version 1.0 TA Document 1999025, July 23, 2001

Page 82 Copyright  2001, 1394 Trade Association. All rights reserved.

Table 9.19 – Field values in the OPEN DESCRIPTOR notify command: REJECTED, INTERIM and
CHANGED response frames

Fields Command Response

 REJECTED INTERIM CHANGED

Descriptor_specifier The descriptor specifier of the
descriptor to open or close

← ← ←

status FF16 ← see Table
9.17

see Table
9.17

reserved 0016 ← ← ←

node_ID FFFF16 ← see Table
9.18

see Table
9.18

← means “same as the command frame”

TA Document 1999025, July 23, 2001 AV/C Descriptor Mechanism Specification Version 1.0

 Copyright  2001, 1394 Trade Association. All rights reserved. Page 83

9.5 READ DESCRIPTOR command

The READ DESCRIPTOR command is a unit/subunit command and is used to manage the retrieval of data
from a descriptor.

The READ DESCRIPTOR command supports descriptor specifiers 0016, 1016, 1116, 2016, 2116, 2316, and
8016 – BF16. See section 8.2 and the sections below for details.

9.5.1 READ DESCRIPTOR control command

The READ DESCRIPTOR control command is used to read the data from the descriptor specified by the
descriptor_specifier. Before a descriptor can be read, it must be opened using the OPEN DESCRIPTOR
control command. Refer to section 9.4 “OPEN DESCRIPTOR command” on page 76 for more
information.

The format of the READ DESCRIPTOR control command is shown by the figure below:

 bytes ck msb lsb
opcode 1 √ READ DESCRIPTOR (0916)

operand[0]
operand[1] see1 √ descriptor_specifier

: see2
: 1 √ read_result_status
: 1 √ Reserved
: 2 – data_length
:
: 2 – Address
:

1 The size of this field depends on the descriptor specifier used.
2 Only its descriptor_specifier_type should be evaluated.

Figure 9.13 – READ DESCRIPTOR control command frame

9.5.1.1 Field definit ions

descriptor_specifier: The descriptor_specifier is specified in the command frame and describes which,
among possibly many, of the structures that the controller wants to read. For more information about the
descriptor specifier, see section 8.1 “Descriptor specifier” on page 50.

If a list descriptor is specified in the descriptor_specifier in the OPEN DESCRIPTOR control command,
the list or any of its entries may be specified in the descriptor_specifier of the subsequent READ
DESCRIPTOR control commands. Otherwise, the same descriptor specifier should be used in the READ
DESCRIPTOR control command as was used in the OPEN DESCRIPTOR control command.

read_result_status: The read_result_status shall be set to FF16 by the controller. The ACCEPTED
response frame contains values indicating the status of the read. See Table 9.21 on page 85 for more
information. For details on what this field means, please refer also to the meaning of the data_length field
below.

reserved: The reserved field shall be treated according to the rules defined in reference [R9].

AV/C Descriptor Mechanism Specification Version 1.0 TA Document 1999025, July 23, 2001

Page 84 Copyright  2001, 1394 Trade Association. All rights reserved.

data_length: The data_length operand specifies the number of bytes to be read from the target. There is a
special case when data_length = 0016 in the command frame, which means that the address field shall be
ignored and the entire descriptor is specified to be read. In the ACCEPTED response frame, this field will
be updated to contain the actual number of bytes that were read.

IMPORTANT: If a target receives a read request with a data_length that would result in reading past the
end of the data boundary indicated by the descriptor_specifier operand, then it shall return only the
legitimate data, a read_result_status of 1216, and a data_length to reflect the size of this data.

address: The address field specifies the address offset of the starting point to be read. It is an offset from
the beginning of the descriptor specified by the descriptor_specifier. When data_length = 0016, then the
address field shall be ignored.

9.5.1.2 READ DESCRIPTOR command responses

When the READ DESCRIPTOR command succeeds, the descriptor data is inserted after the address field
with a length of data_length. Command and response fields are summarized in the table below:

Table 9.20 – Field values in the READ DESCRIPTOR control command: REJECTED, INTERIM and
ACCEPTED response frames

Fields Command Response

 REJECTED INTERIM ACCEPTED

descriptor_specifier The descriptor specifier of
the descriptor to read

← ← ←

read_result_status FF16 ← ← see Table
9.21

reserved 0016 ← ← ←

data_length XX16 (specific amt) or 0016
(all)

← ← YY16 (actual
read amt)

address address offset ← ← ←

data none none none Inserted
descriptor

data
← means “same as the command frame”.

TA Document 1999025, July 23, 2001 AV/C Descriptor Mechanism Specification Version 1.0

 Copyright  2001, 1394 Trade Association. All rights reserved. Page 85

Table 9.21 – read_result_status field values in the ACCEPTED response frame

read_result_status Meaning

1016 Complete read: The entire data specified by the descriptor_specifier,
data_length, and address fields in the command frame was returned.

1116 More to read: A portion of the data specified by the
descriptor_specifier, data_length, and address fields in the command
frame was returned. The data_length field in the response frame
indicates exactly how much data was returned.

1216 Data length too large: There is less data in the descriptor than was
specified by data_length in the command frame. The response frame
contains the actual data_length of the returned data, which includes
the data at the end of the descriptor.

9.5.2 Reading the (sub)unit identif ier descriptor example

To read the (sub)unit identifier descriptor, use the following command sequence:

1) Open the (sub)unit identifier descriptor for read: OPEN DESCRIPTOR, descriptor_specifier type
= 0016, subfunction = 0116.

2) Read the (sub)unit identifier descriptor: READ DESCRIPTOR, descriptor_specifier type = 0016 or
READ INFO BLOCK, info_block_reference_path … (see section 9.8, “READ INFO BLOCK
command” on page 103)

3) Close the (sub)unit identifier descriptor: OPEN DESCRIPTOR, descriptor_specifier type = 0016,
subfunction = 0016.

9.5.3 Reading a l ist or an entry example

To read a list or entry, use the following command sequence:

1) Open the list descriptor for read: OPEN DESCRIPTOR, descriptor_specifier type = 1016 ,
subfunction = 0116.

2) Read the descriptor: READ DESCRIPTOR, descriptor_specifier type = 1016 (for list), or 2016 or
2116 (for entry), or READ INFO BLOCK, info_block_reference_path … (see section 9.8, “READ
INFO BLOCK command” on page 103).

3) Close the list: OPEN DESCRIPTOR, descriptor_specifier type = 1016 (for list), 2016, or 2116, (for
entry) subfunction = 0016.

AV/C Descriptor Mechanism Specification Version 1.0 TA Document 1999025, July 23, 2001

Page 86 Copyright  2001, 1394 Trade Association. All rights reserved.

9.6 WRITE DESCRIPTOR command

The WRITE DESCRIPTOR command is a unit/subunit command and is used to support variable-length
write operations on an open descriptor.

The WRITE DESCRIPTOR command supports descriptor specifiers 0016, 1016, 1116, 2016, 2116, 2316, and
8016 – BF16. See section 8.2 and the sections below for details.

9.6.1 WRITE DESCRIPTOR control command

The WRITE DESCRIPTOR control command is used to write variable-length data in the descriptor of the
target. Before writing to a descriptor, the descriptor must be opened for write access using the OPEN
DESCRIPTOR control command. For more information, see section 9.4 “OPEN DESCRIPTOR
command” on page 76. A WRITE DESCRIPTOR control command is also used to create an info block and
to write an info block. For access rules for writing descriptors and info blocks, see clause 9.2.2.2, “Access
rules for writing descriptors and info blocks” on page 62.

After the write operations, it is recommended that the controller closes the descriptor as soon as possible to
allow other controllers to access the descriptor.

The format of the WRITE DESCRIPTOR control command is shown by the figure below:

 bytes ck msb lsb
opcode 1 √ WRITE DESCRIPTOR (0A16)

Operand[0]
Operand[1] see1 √ descriptor_specifier

: see2
: 1 √ subfunction
: 1 √ group_tag
: 2 – data_length = i
:
: 2 – address
:
:
: i – data
:

1 The size of this field depends on the descriptor specifier used.
2 Only its descriptor_specifier_type should be evaluated.

Figure 9.14 – WRITE DESCRIPTOR control command frame

9.6.1.1 Field definit ions

descriptor_specifier: The descriptor_specifier describes which descriptor is being written to. The exact
format of this field will vary based on the type of descriptor specifier used.

For more information about the descriptor specifier, see section 8.1 “Descriptor specifier” on page 50.

If a list descriptor is specified in the descriptor_specifier in the OPEN DESCRIPTOR control command,
the list or any of its entries may be specified in the descriptor_specifier of the WRITE DESCRIPTOR
control command, since opening a list implies opening its entries. Otherwise, the same descriptor specifier

TA Document 1999025, July 23, 2001 AV/C Descriptor Mechanism Specification Version 1.0

 Copyright  2001, 1394 Trade Association. All rights reserved. Page 87

should be used in the WRITE DESCRIPTOR command as was used in the OPEN DESCRIPTOR
command.

The descriptor_specifier fields in the response frame shall contain the same information as in the command
frame.

subfunction: The subfunction operand specifies the way information is being written by the controller. The
following table describes the legal values for this operand and what those values mean:

AV/C Descriptor Mechanism Specification Version 1.0 TA Document 1999025, July 23, 2001

Page 88 Copyright  2001, 1394 Trade Association. All rights reserved.

Table 9.22 – Values for the subfunction operand

Subfunction
Action

1016 Change: (not recommended, use partial replace instead) Overwrite the descriptor
part indicated by the address and data_length operands. The controller is responsible
for making sure that exactly the same number of bytes are being used to replace
existing data.

Uncontrolled writing beyond the end of a descriptor’s data boundary is not permitted. If
a target receives a write request with a data_length that would result in writing past
the end of the data indicated by the descriptor_specifier operand, then it shall return a
REJECTED response to the command. This applies to the list and individual entries
within the list. For fields within an entry, the controller is responsible for making sure
not to write beyond the field’s or entry’s boundary.

2016 Replace: Overwrite a complete descriptor. The target is responsible for extending or
shrinking descriptor storage to accommodate differences in size between this
descriptor and the one being replaced. The address operand is ignored for this
subfunction.

Note – read and read/ignore fields can be written by the controller using this
subfunction.

3016 Insert: Insert an entry or subunit dependent descriptor in a list, inserting the new
descriptor before the one specified by the descriptor_specifier operand. The address
operand is ignored for this subfunction. This subfunction shall not be used for inserting
list descriptors.

To add the descriptor to the end of the list, specify object_ID = all FF16, or
entry_position = all FF16, in the descriptor_specifier.

Note – read and read/ignore fields can be written by the controller using this
subfunction.

4016 Delete: Delete the list, entry, or subunit dependent descriptor specified by
descriptor_specifier. For this subfunction, address and data_length are ignored. The
target is responsible for adjusting the size of descriptor storage to accommodate this
operation.

Note – A descriptor that includes read and read/ignore fields can be deleted using this
subfunction.

If the descriptor being deleted or any descriptors in the hierarchy under the descriptor
being deleted are open for write during a delete operation, it is unit or subunit-type
dependent whether the delete operation shall be REJECTED (with no descriptors
deleted) or ACCEPTED (with all descriptors deleted). See clause 9.6.1.3, “Deleting list
descriptors” on page 92 for more information.

If a root list is deleted, the unit or subunit is responsible for updating the
number_of_root_lists field and (sub)unit_identifier_descriptor_length field in the
(sub)unit identifier descriptor. When a child list is deleted, the unit or subunit is
responsible for updating the parent entry, which includes removing the child_list_ID
field, setting the has_child_ID attribute to 0, updating the entry’s length, and updating
the entry’s list’s length.

WARNING: If an ambiguous descriptor is specified by the descriptor_specifier, then
an arbitrary descriptor will be deleted!

Use of the UID or SID descriptor_specifier for this subfunction is prohibited.

TA Document 1999025, July 23, 2001 AV/C Descriptor Mechanism Specification Version 1.0

 Copyright  2001, 1394 Trade Association. All rights reserved. Page 89

Subfunction
Action

5016 Partial replace: Replace a portion of the descriptor with data of a different or same
size. This subfunction can also be used to partially delete or partially insert data into a
descriptor. The target is responsible for adjusting the size of descriptor storage and to
update any related fields as necessary to accommodate this operation.

A controller shall not use the partial replace subfunction to delete general fields
(length, size_of…, number_of…, descriptor type, attribute, object_ID, and child_list_ID
fields) individually. Any attempt to do so shall be REJECTED.

Partial replace is a special case. See clause 9.6.1.2, “Partial replace operations” on
page 91 for the command frame and the definitions of the fields.

all others reserved for future definition

The target shall modify the low nibble of the subfunction field in the response frame. See Table 9.26 on
page 94 for more information on the subfunction response values. Refer also to the definitions for
data_length, address, and data for more information about the information in this table.

NOTE — A write operation that results in a change of descriptor size indirectly affects length fields that appear prior
to the memory area that changed. Figure A. on page 138 maps all the descriptor and info block length fields with areas
of the descriptor. As indicated by this figure, a unit or subunit can determine which length fields, in descriptors and info
blocks, are affected by write operations.

A subunit specification may place restrictions on the fields in the WRITE DESCRIPTOR command when
using these subfunctions. For example, the combination of length and address may be limited.

group_tag: The group_tag operand is used for grouped update operations on a descriptor, in which several
WRITE DESCRIPTOR control commands must be issued. The controller may use this field to specify an
arbitrary number of update operations that must be performed on an “all or nothing” basis.

The group_tag is useful due to the limitation of the FCP frame, which is 512 bytes, whereas a descriptor
could contain up to 65535 bytes. If the data to write to the descriptor is longer than 512 bytes (minus fields
required prior to the data field), then the entire write operation must be grouped into multiple smaller write
operations.

Furthermore, some targets impose a limit to the size of the write packet it can accept (being less than 512
bytes). It is recommended that the controller know the limitations of the amount of data a target can accept
per write operation before issuing group update operations. If necessary, this can be determined by issuing
a WRITE DESCRIPTOR status command.

The group_tag is also useful when writing to divided parts of a descriptor that must be committed to
memory at the same time.

Whether the group_tag is supported or not is unit or subunit-type dependent, and can be determined by
using the WRITE DESCRIPTOR specific inquiry command.

This field may take one of the following values:

AV/C Descriptor Mechanism Specification Version 1.0 TA Document 1999025, July 23, 2001

Page 90 Copyright  2001, 1394 Trade Association. All rights reserved.

Table 9.23 – Group_tag values

group_tag Action

0016 Immediate: Immediately write the data to the descriptor. Whether the data is
committed after it is written or after it is closed is unit or subunit-type dependent.

0116 First: Begin a grouped update sequence, with this command being the first of several
which may follow. The target shall take the necessary actions to prepare for this
sequence, and to ensure that the original descriptor structure is preserved, should the
sequence not finish normally.

0216 Continue: Any number of subsequent commands may be issued using this tag, after
the “first” has been issued.

0316 Last: This command signals the last of the grouped update sequence. When the
target receives this group_tag value, it commits all of the data written in the sequence,
including the data in this command, to the specified descriptor.

If the target does NOT receive this command before a bus reset or the time out period
used for descriptor access, then it shall discard ALL of the data written in this
sequence and leave the specified descriptor unmodified.

all others reserved for future definition

NOTE — The purpose of indivisible updates is to provide a safe mechanism for updating a descriptor structure in the
distributed environment, where interruptions and partially-updated descriptors may have a fatal effect on the unit or
subunit.

Supporting the group_tag is optional; if a unit or subunit receives a non-zero group_tag, it may return a
response of NOT IMPLEMENTED. The controller will then have to fall back to using immediate
operations. The controller shall verify that all write operations in a “group update” are ACCEPTED by the
target. If any of the write operations are REJECTED, then the target will return a REJECTED response to
all further group updates, and the controller should stop the “group update” operation.

data_length: The data_length operand in the command frame specifies the number of bytes in the data
field to be written to the descriptor.

If data_length specifies more bytes than can be accepted by the target in a single operation then the target
may return either an ACCEPTED response or a REJECTED response to the command. If the command is
ACCEPTED and data was dropped, then this must be indicated to the controller in the response frame by
updating the data_length field to the number of accepted bytes so that it can respond accordingly. If the
command is REJECTED, then the controller should issue the WRITE DESCRIPTOR status command to
determine the maximum length of data the target can accept.

If the combination of data_length and address (below) reference data out of bounds, then the target shall
return a REJECTED response to the command.

address: The address field specifies the address of the starting point to be written. It is an offset from the
beginning of the particular entity described by descriptor_specifier.

If the address references data out of bounds, then the target shall return a REJECTED response to the
command.

data: The data field in the command frame contains the data bytes to be stored, the length of which is
indicated by data_length. The target shall check the validity of the data written by the controller to the
extent possible described by the unit or subunit-type specification, and if any data is invalid, the target shall
return with a REJECTED response.

TA Document 1999025, July 23, 2001 AV/C Descriptor Mechanism Specification Version 1.0

 Copyright  2001, 1394 Trade Association. All rights reserved. Page 91

If the target returns ACCEPTED, INTERIM or REJECTED responses, then the frame shall NOT contain
the data in the data field that was specified in the original command frame. This avoids possibly large data
transfers in the case that such responses are returned.

9.6.1.2 Partial replace operations

The WRITE DESCRIPTOR control command has the following frame when the partial_replace
subfunction is specified:

 bytes ck msb lsb
opcode 1 √ WRITE DESCRIPTOR (0A16)

operand[0]
operand[1] see1 √ descriptor_specifier

: see2
: 1 √ Subfunction “partial_replace” = 5016
: 1 √ group_tag
: 2 – Replacement_data_length = i
:
: 2 – address
:
: 2 – original_data_length
:
:
: i – replacement_data
:

1 The size of this field depends on the descriptor specifier used.
2 Only its descriptor_specifier_type should be evaluated.

Figure 9.15 – WRITE DESCRIPTOR control command frame, subfunction = partial_replace (5016)

The descriptor_specifier, subfunction and group_tag operands are as described above.

replacement_data_length: The replacement_data_length field specifies the number of bytes in the
replacement_data operands.

address: The address operand specifies where the operation (replace, insert or delete) is to be performed.
In the case of insert, it indicates where to begin inserting bytes. In the case of delete, it indicates where to
begin deleting bytes.

If the address references invalid memory, the target shall return a REJECTED response to the command.

original_data_length: The original_data_length field specifies the number of bytes in the original
descriptor data. All descriptor data specified by the original_data_length will be removed in the partial
replace operation. If the combination of address and original_data_length reference invalid memory, the
target shall return a REJECTED response to the command.

The replacement_data_length along with the original_data_length field can be specified for partial insert
or partial delete operations:

1) Partial Insert: When the original_data_length operand = 0, the operation is a partial insert. In
this case, the replacement_data_length operand shall be greater than 0, indicating the number of
bytes to be inserted.

AV/C Descriptor Mechanism Specification Version 1.0 TA Document 1999025, July 23, 2001

Page 92 Copyright  2001, 1394 Trade Association. All rights reserved.

2) Partial Delete: When replacement_data_length = 0, the operation is a partial delete and the
replacement_data operand does not exist. In this case, the original_data_length operand shall be
greater than 0, indicating the number of bytes to be deleted.

The combination of replacement_data_length = 0 and original_data_length = 0 is illegal. If they are both
zero, the target shall return a REJECTED response to the command.

replacement_data: replacement_data shall contain the data that replaces the original descriptor data.

The partial_replace subfunction shall not be used to delete any general descriptor fields in this
specification, except fields in the entry_specific_information, list_specific_information,
(sub)unit_dependent_information and manufacturer_dependent_information areas, whose internal formats
are defined by their unit or subunit-type specification. Any attempt to do so shall be REJECTED.

9.6.1.3 Deleting l ist descriptors

List descriptors can be deleted with the delete subfunction.

There are two ways to delete list descriptors, which are unit or subunit-type dependent:

1) Deleting a list only: Open the list descriptor and list descriptor’s parent entry’s list (or the UID or
SID) for write, then delete the child (or root) list descriptor. Under this circumstance, the list’s
parent entry (or UID or SID) shall be updated by the target.

2) Deleting a list and its parent entry: Open the list descriptor and list descriptor’s parent entry’s
list for write, and delete the entry. The (sub)unit shall be responsible for updating the parent
entry’s list.

NOTE — When deleting a root list, use option 1) above.

The delete operation shall be atomic, that is, no other descriptor command shall be executed on the
descriptor structure while the delete operation occurs.

Furthermore, a (sub)unit may support deleting only leaf lists or deleting lists and entries with child lists
(cascade deleting).

9.6.1.3.1 Deleting leaf l ists

If only delete leaf lists is supported, then only those descriptors without child lists can be deleted (those at
the bottom of the hierarchy). A (sub)unit can support either one or both of the options above for deleting
leaf lists. If the descriptors are already open for write by another controller(s), then the controller must wait
until the descriptors can be accessed before deleting the list.

9.6.1.3.2 Cascade deleting l ists

When a (sub)unit supports cascade delete, all descriptors in the hierarchy below the list descriptor being
deleted are also deleted during the operation subject to certain restraints given below.

If cascade-delete is supported, and if any list descriptor in the hierarchy is open for write by another
controller at the start of the delete operation, it shall be (sub)unit-type dependent whether the delete
command shall be ACCEPTED or REJECTED. If ACCEPTED, then those open descriptors are force-
closed and deleted. If REJECTED, then none of the descriptors (opened or closed) are deleted.

TA Document 1999025, July 23, 2001 AV/C Descriptor Mechanism Specification Version 1.0

 Copyright  2001, 1394 Trade Association. All rights reserved. Page 93

9.6.1.4 WRITE DESCRIPTOR control command responses

The following table summarizes the command and response field values for the WRITE DESCRIPTOR
command when subfunction ≠ 5016.

Table 9.24 – Field values in the WRITE DESCRIPTOR control command: REJECTED, INTERIM and
ACCEPTED response frames

Fields Command Response

 REJECTED INTERIM ACCEPTED

descriptor_specifier The descriptor specifier of
the descriptor to write

← ← ←

subfunction see Table 9.22 see Table
9.26

← see Table
9.26

group_tag see Table 9.23 ← ← ←

data_length size of data ← ← number of
accepted

bytes

address address of starting point
from beginning of

descriptor_specifier

← ← ←

data Variable none none none
← means “same as the command frame”

The following table summarizes the command and response field values for the WRITE DESCRIPTOR
command when subfunction = 5016.

Table 9.25 – Field values in the WRITE DESCRIPTOR control command: REJECTED, INTERIM and
ACCEPTED response frames

Fields Command Response

 REJECTED INTERIM ACCEPTED

descriptor_specifier The descriptor specifier of
the descriptor to write

← ← ←

subfunction 5016 see Table
9.26.

← see Table 9.26

group_tag see Table 9.23 ← ← ←

replacement_
data_length

size of replacement data ← ← number of
accepted bytes

address address of starting point
from beginning of

descriptor

← ← ←

original_data_length size of original data ← ← ←

data Variable none none none
← means “same as the command frame”

The following table describes the subfunction field in the ACCEPTED and REJECTED response frames.

AV/C Descriptor Mechanism Specification Version 1.0 TA Document 1999025, July 23, 2001

Page 94 Copyright  2001, 1394 Trade Association. All rights reserved.

Table 9.26 – subfunction in the response frame

Subfunction in the
response

Response Meaning

x016 ACCEPTED The specified subfunction was performed with no problem. R/I fields
were not changed as specified in the command frame.

x116 ACCEPTED This response applies only to the partical_replace subfunction.

The original descriptor data, specified by address and
origial_data_length fields, was deleted and the lower part of
replacement data was inserted. R/I fields were not changed as
specified in the command frame. The target shall return the
replacement_data_length field to be equal to the size of the inserted
part. The controller may need to issue more partial_ replace_
operation(s) to insert the remaining part.

x216 REJECTED The address and data_length fields specify an invalid address, or the
target cannot support the amount of data specified by data_length, so
the write operation was not performed. This may also be returned if
the target prevents controllers from writing any fields as specified in
data field, or descriptor_specifier is invalid.

x316 ACCEPTED The specified subfunction was performed but some R/W/I fields were
not changed as specified in the command frame. This response does
not apply to the delete subfunction.

x416 ACCEPTED This response applies only to the partical_replace subfunction.

The origial descriptor data, specified by address and
origial_data_length fields, was deleted and the lower part of
replacement data was inserted. Some R/W/I fields were not changed
as specified in the command frame. The target shall return the
replacement_data_length field to be equal to the size of the
performed part. The controller may need to issue more partial_
replace_ operation(s) to insert the remaining part.

NOTE — If subfunction x316 or x416 is returned, then the controller may read the descriptor to determine which
R/W/I fields were not changed. Note that the unit or subunit that is compliant to the previous versions of this
specification does not return subfunction x316 or x416.

9.6.1.5 Modifying the (sub)unit identif ier descriptor – example

To modify the (sub)unit identifier descriptor, use the following command sequence:

1) Open the (sub)unit identifier descriptor for write: OPEN DESCRIPTOR, descriptor_specifier type
= 0016, subfunction = 0316.

2) Read the descriptor as necessary: READ DESCRIPTOR, descriptor_specifier type = 0016.

3) Write to the descriptor: WRITE DESCRIPTOR, descriptor_specifier type = 0016, subfunction =
5016, or WRITE INFO BLOCK, see section 9.9, “WRITE INFO BLOCK command” on page 106.

4) Close the (sub)unit identifier descriptor: OPEN DESCRIPTOR, descriptor_specifier type = 0016,
subfunction = 0016.

TA Document 1999025, July 23, 2001 AV/C Descriptor Mechanism Specification Version 1.0

 Copyright  2001, 1394 Trade Association. All rights reserved. Page 95

9.6.1.6 Modifying l ist or entry specif ic information, extended information
or Object_ID – example

To modify the list specific information of an entry or list or the object_ID of an entry, use the following
command sequence:

1) Open the list for write: OPEN DESCRIPTOR, descriptor_specifier type = 1016, subfunction =
0316.

2) Read the descriptor as necessary: READ DESCRIPTOR, descriptor_specifier type = 1016, 2016,
2116.

3) Write to the descriptor(s): WRITE DESCRIPTOR, descriptor_specifier type = 1016, 2016, 2116,
subfunction = 5016.

4) Read info blocks as necessary: READ INFO BLOCK, … (see section 9.8, “READ INFO BLOCK
command” on page 103)

5) Write to the info block(s) as necessary: WRITE INFO BLOCK, ...(see section 9.9, “WRITE INFO
BLOCK command” on page 106)

6) Close the list: OPEN DESCRIPTOR, descriptor_specifier type = 1016, subfunction = 0016.

9.6.1.7 Deleting a l ist descriptor – example

To delete a list descriptor, use the following command sequence:

1) Open the list for write: OPEN DESCRIPTOR, descriptor_specifier type = 1016, subfunction =
0316.

2) Open the parent entry’s list for write: OPEN DESCRIPTOR, descriptor_specifier type = 1016,
subfunction = 0316.

3) Delete the list descriptor: WRITE DESCRIPTOR, descriptor_specifier type = 1016, subfunction =
4016.

4) Or, delete the parent entry descriptor: WRITE DESCRIPTOR, descriptor_specifier type = 2016,
subfunction = 4016.

5) Close the parent entry’s list descriptor: OPEN DESCRIPTOR, descriptor_specifier type = 1016,
subfunction = 0016.

9.6.1.8 Deleting an entry descriptor without a child l ist – example

To delete an entry descriptor, which has no child list, use the following command sequence:

1) Open the entry’s list for write: OPEN DESCRIPTOR, descriptor_specifier type = 1016,
subfunction = 0316.

2) Delete the entry: WRITE DESCRIPTOR, descriptor_specifier type = 2016, subfunction = 4016.

3) Close the list: OPEN DESCRIPTOR, descriptor_specifier type = 1016, subfunction = 0016.

AV/C Descriptor Mechanism Specification Version 1.0 TA Document 1999025, July 23, 2001

Page 96 Copyright  2001, 1394 Trade Association. All rights reserved.

9.6.2 WRITE DESCRIPTOR status command

The WRITE DESCRIPTOR status command may be used to determine the (sub)unit’s capability to accept
data in its descriptor in a single operation. The command frame for the WRITE DESCRIPTOR status
command is the same as the WRITE DESCRIPTOR control command frame, except that the address and
data operands are not included. In this case, the format shown by the figure below is used:

 bytes ck msb lsb
Opcode 1 √ WRITE DESCRIPTOR (0A16)

operand[0]
: see1 √ descriptor_specifier
: see2
: 1 – subfunction = FF16
: 1 – group_tag = FF16
: 2 – data_length = FF FF16
:

1 The size of this field depends on the descriptor specifier used.
2 Only its descripor_specifier_type should be evaluated

Figure 9.16 – WRITE DESCRIPTOR status command frame

9.6.2.1 Field definit ions

descriptor_specifier: The descriptor_specifier describes which descriptor structure to check for write. The
exact format of this specifier will vary based on the kind of descriptor (list or entry), the method of
specifying this descriptor, and on the type of unit or subunit for which the descriptor is defined. For more
information about the descriptor specifier, see section 8.1 “Descriptor specifier” on page 50.

The descriptor_specifier does not change in the response frame.

The remaining 4 bytes shall be set to FF16 on input.

The WRITE DESCRIPTOR status command can be issued on a descriptor that is closed or already opened
for write by another controller.

9.6.2.2 WRITE DESCRIPTOR status command responses

The response frame for the WRITE DESCRIPTOR status command is the same as the control command
frame, except the variable sized data operand and the address operand are not included. The following
table summarizes the control and response frames of the WRITE DESCRIPTOR status command:

TA Document 1999025, July 23, 2001 AV/C Descriptor Mechanism Specification Version 1.0

 Copyright  2001, 1394 Trade Association. All rights reserved. Page 97

Table 9.27 – Field values in the WRITE DESCRIPTOR status command: REJECTED, IN TRANSITION
and STABLE response frames

Fields Command Response

 REJECTED IN
TRANSITION

STABLE

descriptor_specifier The descriptor specifier of the
descriptor to inquire

← ← ←

subfunction FF16 ← ← ←

group_tag FF16 ← ← 0016

data_length FF FF16 ← ← max number
of accepted

bytes
← means “same as the command frame”

The data_length field shall return the maximum number of bytes that may be written into the specified
descriptor in a single WRITE DESCRIPTOR operation. If this operand is returned with a value of zero,
then there is no write access possible for the descriptor because it can’t be modified.

AV/C Descriptor Mechanism Specification Version 1.0 TA Document 1999025, July 23, 2001

Page 98 Copyright  2001, 1394 Trade Association. All rights reserved.

9.7 OPEN INFO BLOCK command (not recommended)

The OPEN INFO BLOCK command is a unit/subunit command and is used to manage the access of info
blocks in target devices. This command is not recommended. Implementers should use OPEN
DESCRIPTOR on a list (or the (sub)unit identifier descriptor) instead.

If a unit or subunit supports the OPEN INFO BLOCK command, it should also support the OPEN
DESCRIPTOR command.

The OPEN INFO BLOCK command supports descriptor specifiers 0016, 1016, 1116, 2016, 2116, 2316, 3016,
3116 and 8016 – BF16. See section 8.2 and the sections below for details.

9.7.1 OPEN INFO BLOCK control command

The OPEN INFO BLOCK control command is used to gain read-only or write-enabled access to an info
block including its secondary_fields. It is also used to relinquish that access. It is similar to the OPEN
DESCRIPTOR command in terms of rules of operation and access. See section 9.2 ”Reading and writing
AV/C descriptor structures” on page 59 for more information.

The OPEN INFO BLOCK control command has the following format:

 bytes Ck msb lsb
Opcode 1 √ OPEN INFO BLOCK (0516)

operand[0]
: see1 √ info_block_reference_path
: See2
: 1 √ subfunction
: 1 √ reserved

1 The size of this field depends on the info block reference path used.
2 Its descriptor_specifier_types in descriptor_specifiers should be evaluated. The evaluation of other fields is unit or
subunit-type dependent.

Figure 9.17 – OPEN INFO BLOCK control command frame

9.7.1.1 Field definit ions

info_block_reference_path: The info_block_reference_path field provides a description of which info
block is to be opened by this command. For more information about the info block reference path, see
section 8.3 “Information block reference path” on 55.

subfunction: The subfunction field determines the operation performed by the target, as defined by the
table below:

TA Document 1999025, July 23, 2001 AV/C Descriptor Mechanism Specification Version 1.0

 Copyright  2001, 1394 Trade Association. All rights reserved. Page 99

Table 9.28 – Values of the subfunction operand

subfunction Action

0016 Close: Relinquish use of the info block

0116 Read open: Open the info block for read-only
access

0316 Write open: Open the info block for read or write
access

others Reserved

9.7.1.2 OPEN INFO BLOCK control command responses

The following table shows the REJECTED, INTERIM, and ACCEPTED responses to the OPEN INFO
BLOCK control command.

Table 9.29 – Field values in the OPEN INFO BLOCK control command: REJECTED, INTERIM and
ACCEPTED response frames

Fields Command Response

 REJECTED INTERIM ACCEPTED

Info_block_reference_
path

The reference path of the info block
to open or close

← ← ←

subfunction See Table 9.28 ← ← ←

reserved 0016 ← ← ←

← means “same as the command frame”

If the OPEN INFO BLOCK control command returns REJECTED, use the OPEN INFO BLOCK status
command to determine why.

AV/C Descriptor Mechanism Specification Version 1.0 TA Document 1999025, July 23, 2001

Page 100 Copyright  2001, 1394 Trade Association. All rights reserved.

9.7.2 OPEN INFO BLOCK status command

OPEN INFO BLOCK may also be used as a STATUS command to inquire about the current open
condition of the info block. It can be performed on an open or closed info block. The format of the OPEN
INFO BLOCK status command is shown below:

 bytes ck msb lsb
Opcode 1 √ OPEN INFO BLOCK (0516)

operand[0]
: see1 √ info_block_reference_path
: see2
: 1 √ status
: 1 √ reserved
: 2 √ node_ID
:

1 The size of this field depends on the info block reference path used.
2 Its descriptor_specifier_types in descriptor_specifiers should be evaluated. The evaluation of other fields is unit or
subunit-type dependent.

Figure 9.18 – OPEN INFO BLOCK status command frame

9.7.2.1 Field definit ions

info_block_reference_path: The info_block_reference_path operand specifies which, among possibly
many, of the info blocks that the controller wants to know access status. For more information about the
info block reference path, see section 8.3 “Information block reference path” on 55.

status: In the command frame, status shall be set to FF16. If the response is STABLE, status contains the
current access state of the info block specified by the info_block_reference_path operand. See clause
9.7.2.2 “OPEN INFO BLOCK status command responses” on page 100 for more information.

node_ID: In the command frame, node_ID shall be set to FFFF16. In the STABLE response frame with
status = 3316, the unit or subunit shall update the node_ID operand. See Table 9.32 – Value of node_ID
based on status for more information.

9.7.2.2 OPEN INFO BLOCK status command responses

The following table shows the OPEN INFO BLOCK status response frame field values for the
REJECTED, IN TRANSITION and STABLE responses.

TA Document 1999025, July 23, 2001 AV/C Descriptor Mechanism Specification Version 1.0

 Copyright  2001, 1394 Trade Association. All rights reserved. Page 101

Table 9.30 – Field values in the OPEN INFO BLOCK status command: REJECTED, IN TRANSITION
and STABLE response frames

Fields Command Response

 REJECTED IN TRANSITION STABLE

Info_block_reference_path The reference path of
the info block to check

open status

← ← ←

status FF16 ← See Table 9.31 See Table
9.31

reserved 0016 ← ← ←

node_ID FF16 ← See Table 9.31 See Table
9.32

← means “same as the command frame”

Table 9.31 – status in the OPEN INFO BLOCK status command: STABLE response frame

Status Meaning

0016 Ready for open: The info block specified by info_block_reference_path is
closed and can be accessed. No controllers currently have access (either
read or write).

0116 Read opened: The info block or its containing descriptor(s) is open for read-
only access to its data by one or more controllers, and is able to accept
additional read-only open requests.

0416 Non Existent: No info block specified by info_block_reference_path exists.
0516 List/entry-only (deprecated): Access control for individual info blocks in a

list or an entry is not supported – the controller must obtain access to the
entire list or the entire entry. In this case, the NOT IMPLEMENTED response
will be returned and, therefore, this value will not be used.

1116 At capacity: The info block is open for read-only access to the data and is
unable to accept any additional read-only open requests.

3316 Write opened: The info block or its containing descriptor(s) is open for read
or write access to the data. No access (for read-only or read or write) by
other controllers is allowed.

Table 9.32 – Value of node_ID based on status

Status Value of node_ID

3316 Controller with write access: When the info block is open for write access by a
controller, the (sub)unit shall update this field to contain the node ID of the controller.

all other values The value of this field is not changed in the response frame; it remains as
FF FF16.

If a controller opens an info block, its status is write-open and the status of its entry and list shall be write-
open as a result. However, the statuses of other info blocks in the list, such as in another entry may be
“ready for open”. To determine the status of other info blocks, issue the OPEN INFO BLOCK status
command on them, not their entry or list.

AV/C Descriptor Mechanism Specification Version 1.0 TA Document 1999025, July 23, 2001

Page 102 Copyright  2001, 1394 Trade Association. All rights reserved.

If for some reason the target cannot return any of the status responses in the STABLE response frame, then
the target shall return a REJECTED response. Under this condition, the info block is not accessible at this
time.

TA Document 1999025, July 23, 2001 AV/C Descriptor Mechanism Specification Version 1.0

 Copyright  2001, 1394 Trade Association. All rights reserved. Page 103

9.8 READ INFO BLOCK command

The READ INFO BLOCK command is a unit/subunit command and is used to manage the reading of
information from info blocks in descriptor structures. The OPEN DESCRIPTOR command should precede
any consecutive READ INFO BLOCK commands. Refer to section 9.4 “OPEN DESCRIPTOR command”
on page 76 for more information.

The READ INFO BLOCK command supports descriptor specifiers 0016, 1016, 1116, 2016, 2116, 2316, 3016,
3116 and 8016 – BF16. See section 8.2 and the sections below for details.

9.8.1 READ INFO BLOCK control command

The READ INFO BLOCK control command is used to read the contents of a specified info block. It is
similar to the READ DESCRIPTOR control command, in terms of rules of operation. The control
command has the following format:

 bytes ck msb lsb
opcode 1 √ READ INFO BLOCK (0616)

operand[0]
operand[1] see1 √ Info_block_reference_path

: see2
: 1 √ read_result_status
: 1 √ reserved
: 2 – data_length
:
: 2 – address
:

1 The size of this field depends on the descriptor specifier used.
2 Its descriptor_specifier_types in descriptor_specifiers should be evaluated. The evaluation of other fields is unit or
subunit-type dependent.

Figure 9.19 – READ INFO BLOCK control command frame

9.8.1.1 Field definit ions

info_block_reference_path: The info_block_reference_path specifies the path to the info block that shall
be read by this operation. For more information about the info block reference path, see section 8.3
“Information block reference path ”on 55.

read_result_status: The controller shall set the read_result_status field to FF16 in the command frame. In
the response frame, the (sub)unit shall update this field to indicate the status of the operation. See Table
9.34 for more information. For details on what this field means, please refer also to the meaning of the
data_length field below.

reserved: The reserved field shall be treated according to the rules defined in reference [R9].

data_length: The data_length operand specifies the number of bytes to be read from the target. There is a
special case when data_length = 0, which means that the address field shall be ignored and the entire info
block (the header, the primary_fields and the secondary_fields) is specified to be read. In the ACCEPTED
response frame, this field will be updated to contain the actual number of bytes that were read.

AV/C Descriptor Mechanism Specification Version 1.0 TA Document 1999025, July 23, 2001

Page 104 Copyright  2001, 1394 Trade Association. All rights reserved.

IMPORTANT: If a target receives a read request with a data_length that would result in reading past the
end of the data boundary indicated by the info_block_reference_path operand, then it shall return only the
legitimate data, a read_result_status of 1216, and a data_length to reflect the size of this data.

address: The address field specifies the relative location of the starting point to be read. It is an offset from
the beginning of the info block header. Note that this is different from the WRITE INFO BLOCK
command, where write operations are relative to the beginning of the primary_fields area. When
data_length = 0, then the address field shall be ignored.

If there is no data at the specified address when data_length is > 0, then the target shall return a
REJECTED response to the command.

If an ACCEPTED response frame is returned by the target after a READ INFO BLOCK control command,
the response data consists of additional fields inserted after the address field that contain the data bytes
requested. If the target is not able to return the number of bytes indicated by the data_length input field in a
single operation due to data transfer limitations, then it shall return the maximum quantity of data it is able
to and set the data_length field in the response frame to this value. It shall also update the
read_result_status field as described in section 9.5.1, “READ DESCRIPTOR control command” on page
83.

When reading an info block, the entire block, including nested info blocks, may be read in a single
operation (depending on the data transfer limits of the controller and target).

9.8.1.2 READ INFO BLOCK control command responses

When the READ INFO BLOCK command succeeds, the info block’s data is inserted after the address field
with a length of data_length. Fields in the command and response frames are summarized in the table
below:

Table 9.33 – Field values in the READ INFO BLOCK control command: REJECTED, INTERIM and
ACCEPTED response frames

Fields Command Response

 REJECTED INTERIM ACCEPTED

info_block_reference
_path

The info block reference
path of the info block to

read

← ← ←

read_result_status FF16 ← ← see Table
9.34

reserved 0016 ← ← ←

data_length XX16 (specific amt) or
0016 (all)

← ← YY16 (actual
amt)

address address offset ← ← ←

data none none None Inserted info
block data

← means “same as the command frame”

TA Document 1999025, July 23, 2001 AV/C Descriptor Mechanism Specification Version 1.0

 Copyright  2001, 1394 Trade Association. All rights reserved. Page 105

Table 9.34 – read_result_status field values in the ACCEPTED response frame

Value Meaning

1016 Complete read: The entire data specified by the
info_block_reference_path, data_length, and the address fields in the
command frame was returned.

1116 More to read: A portion of the data specified by the
info_block_reference_path, data_length, and address fields in the
command frame was returned. The data_length field in the response
frame indicates exactly how much data was returned.

1216 Data length too large: There is less data in the info block than was
specified by data_length in the command frame. The response frame
contains the actual data_length of the returned data, which includes
data at the end of the info block.

9.8.1.3 READ INFO BLOCK – examples

See section 9.5.3, “Reading a list or an entry” on page 85 for examples of reading info blocks.

AV/C Descriptor Mechanism Specification Version 1.0 TA Document 1999025, July 23, 2001

Page 106 Copyright  2001, 1394 Trade Association. All rights reserved.

9.9 WRITE INFO BLOCK command

The WRITE INFO BLOCK command is a unit/subunit command and is used to manage the writing of info
blocks within descriptor structures.

The WRITE INFO BLOCK command supports descriptor specifiers 0016, 1016, 1116, 2016, 2116, 2316, 3016,
3116 and 8016 – BF16. See section 8.2 and the sections below for details.

9.9.1 WRITE INFO BLOCK control command

The WRITE INFO BLOCK control command allows a controller to change the contents of a specified
information block. It is similar to the WRITE DESCRIPTOR control command in terms of rules of
operation. The control command has the following format:

 bytes ck msb lsb
opcode 1 √ WRITE INFO BLOCK (0716)

operand[0]
: see1 see2 info_block_reference_path
:
: 1 √ subfunction "partial_replace" = 5016
: 1 √ group_tag
: 2 – replacement_data_length = I
:
: 2 – Address
:
: 2 – original_data_length
:
:
: i – replacement_info_block_data
:

1 The size of this field depends on the info block reference path used.
2 Its descriptor_specifier_types in descriptor_specifiers should be evaluated. The evaluation of other fields is unit or
subunit-type dependent.

Figure 9.20 – WRITE INFO BLOCK control command frame

9.9.1.1 Field definit ions

info_block_reference_path: The info_block_reference_path specifies the path to the info block that shall
be changed by this operation. For more information about the info block reference path, see section 8.3
“Information block reference path”on 55.

subfunction: The subfunction field specifies which write operation subfunction to perform. The
subfunctions are the same as those for the WRITE DESCRIPTOR control command, however, ONLY the
partial_replace subfunction is valid for this command. If the controller specifies any other subfunctions,
then the unit or subunit shall return a response of NOT IMPLEMENTED. See clause 9.6.1, “WRITE
DESCRIPTOR control command” on page 86 for more information on the partial_replace subfunction.

NOTE — A write operation that results in a change of the size of an info block indirectly affects length fields that
appear prior to the memory area that changed. Figure A.1 – Structure of list descriptor with entries and info blocks on

TA Document 1999025, July 23, 2001 AV/C Descriptor Mechanism Specification Version 1.0

 Copyright  2001, 1394 Trade Association. All rights reserved. Page 107

page 138 maps all the descriptor and info block length fields with areas of the descriptor. From this figure, it can be
determined which length fields are affected by write operations anywhere in the info block.

A subunit specification may place restrictions on the fields in the WRITE INFO BLOCK command. For
example, the combination of length and address may be limited.

group_tag: The group_tag field is also the same as defined in the WRITE DESCRIPTOR control
command.

Table 9.35 – Group_tag values

group_tag Action

0016 Immediate: Immediately write the data to the info block. Whether the data is
committed after it is written or after it is closed is unit or subunit-type dependent.

0116 First: Begin an “grouped update” sequence, with this command being the first of
several which may follow. The target shall take the necessary actions to prepare for
this sequence, and to ensure that the original info block structure is preserved, should
the sequence not finish normally.

0216 Continue: Any number of subsequent commands may be issued using this tag, after
the “first” has been issued.

0316 Last: This command signals the last of the grouped update sequence. When the
target receives this group_tag value, it commits all of the data written in the sequence,
including the data in this command, to the specified info block structure.

If the target does NOT receive this command before a bus reset or the time out period
used for info block access, then it shall discard ALL of the data written in this
sequence and leave the specified info block unmodified.

all others reserved for future definition

replacement_data_length: The replacement_data_length field specifies the number of bytes in the
replacement_info_block_data field.

NOTE — Subunit-type specifications may restrict the usage of replacement_data_length and address in this
command, such as requiring the replacement_data_lengh to be equal to the original_data_length, and requiring that the
address be 000016.

address: The address field specifies a zero-based offset, relative to the beginning of the primary_fields
area, at which the data should be written.

original_data_length: The original_data_length field specifies the number of bytes to be deleted.

replacement_info_block_data: The replacement_info_block_data field contains the new data to be
written into the info block.

9.9.1.2 Writ ing to info blocks

When writing into an info block, only the primary_fields area shall be modified by the WRITE INFO
BLOCK command. If an info block contains several nested info blocks, each of them must be changed
individually by writing into their primary fields. The following diagram illustrates this concept:

AV/C Descriptor Mechanism Specification Version 1.0 TA Document 1999025, July 23, 2001

Page 108 Copyright  2001, 1394 Trade Association. All rights reserved.

 Table 9.36 – Information block basic structure

Address Contents

00 0016 compound_length
00 0116
00 0216 info_block_type
00 0316
00 0416 primary_fields_length
00 0516
00 0616

: primary_fields...
: (info block type-specific)
:
:
: secondary_fields
: (if defined)

The primary_fields area, marked by the lighter gray color, is the only area that can be changed by a
controller using the WRITE INFO BLOCK command. The (sub)unit is responsible for updating the
appropriate length fields for the info block being written into as well as any containing info blocks. It is
also responsible for adjusting any descriptor offset values. See Figure A. for more information.

NOTE — Using a WRITE DESCRIPTOR commands, the controller can create or write an info block with whole
data of info block basic structure. See clause 9.2.2.2 for more information about the rule. In this case, the controller is
responsible for ensuring the appropriate length fields in the command frame as well as any containing info block.

The following rules are defined for the WRITE INFO BLOCK command:

1) Before making any changes to an info block, the controller shall first obtain write access to that
info block. This can be achieved in two ways:

a) Info blocks are always nested inside of descriptor structures (entries, lists, UID, SID, etc.),
thus, the controller may use the OPEN DESCRIPTOR control command with write access to
the descriptor. This is the recommended method. Those info blocks that are inside the scope
of the descriptor will be available for modification.

b) Using the OPEN INFO BLOCK control command with write access. Supporting this
command is optional and not recommended for units and subunits, and would allow several
controllers to change separate info blocks independently from each other. If the unit or
subunit supports the WRITE INFO BLOCK control command, then it may also support the
OPEN INFO BLOCK control command; however it is supported, it is not required to support
multiple simultaneous controllers (supporting only one controller with write access at a time
is allowed).

2) Other access rules as given in clause 9.2.2.2 shall be adhered to.

9.9.1.3 WRITE INFO BLOCK control command responses

The following table summarizes the command and response field values for the WRITE INFO BLOCK
control command.

This area modified by WRITE
INFO BLOCK command

offset = 0

TA Document 1999025, July 23, 2001 AV/C Descriptor Mechanism Specification Version 1.0

 Copyright  2001, 1394 Trade Association. All rights reserved. Page 109

Table 9.37 – Field values in the WRITE INFO BLOCK control command: REJECTED, INTERIM and
ACCEPTED response frames

Fields Command Response

 REJECTED INTERIM ACCEPTED

info_block_reference_
path

The info block reference
path of the info block to

write

← ← ←

subfunction 5016 see Table
9.38

← see Table
9.38

group_tag see Table 9.35 ← ← ←

replacement_
data_length

size of replacement data ← Number of
accepted

bytes

address address of starting point
from beginning of primary

fields

← ← ←

original_data_length size of original data ← ← ←

data Variable none None None
← means “same as the command frame”

AV/C Descriptor Mechanism Specification Version 1.0 TA Document 1999025, July 23, 2001

Page 110 Copyright  2001, 1394 Trade Association. All rights reserved.

Table 9.38 – subfunction in the response frame

subfunction in the
response

Response Meaning

x016 ACCEPTED The specified subfunction was performed with no problem. R/I
fields were not changed as specified in the command frame.

x116 ACCEPTED The origial descriptor data, specified by address and
origial_data_length fields, was deleted and the lower part of
replacement data was inserted. R/I fields were not changed as
specified in the command frame. The target shall return the
replacement_data_length field to be equal to the size of the
performed part. The controller may need to issue more partial_
replace_ operation(s) to insert the reamaining part.

x216 REJECTED The address and data_length fields specify an invalid address,
or the target cannot support the amount of data specified by
data_length, so the write operation was not performed. This
may also be returned if the target prevents controllers from
writing any fields in replacement_info_block_data field, or
info_block_reference_path is invalid.

x316 ACCEPTED The specified subfunction was performed but some R/W/I fields
were not changed as specified in the command frame.

x416 ACCEPTED The origial descriptor data, specified by address and
origial_data_length fields, was deleted and the lower part of
replacement data was inserted. Some R/W/I fields were not
changed as specified in the command frame. The target shall
return the replacement_data_length field to be equal to the size
of the performed part. The controller may need to issue more
partial_ replace_ operations(s) to insert remaining part.

If subfunction x316 or x416 is returned, then the controller may read the info block to determine which R/W/I fields were
not changed. Note that the unit or subunit that is compliant to the previous versions of this specification does not return
subfunction x316 or x416.

TA Document 1999025, July 23, 2001 AV/C Descriptor Mechanism Specification Version 1.0

 Copyright  2001, 1394 Trade Association. All rights reserved. Page 111

9.10 SEARCH DESCRIPTOR command

The SEARCH DESCRIPTOR command is a unit/subunit command and allows a controller to request the
unit or subunit to execute a search within the descriptor data space (NOT within the content data space)
looking for a specified entity. If a search is successful, the returned results will be a specifier that identifies
the first candidate that was found; multiple specifiers are not returned by the search operation. The
controller must specify additional searches to find additional instances that match the search criteria.

The SEARCH DESCRIPTOR command supports descriptor specifiers 0016, 1016, 1116, 2016, 2116, 2316, and
8016 – BF16. See section 8.2 and the sections below for details.

9.10.1 SEARCH DESCRIPTOR control command

The control command has the following format:

 bytes ck msb Lsb
opcode 1 √ SEARCH DESCRIPTOR (0B16)

operand[0]
: See1 see2 search_for
:
:
: See1 see2 search_in
:
:
: See1 see2 start_point
:
: 1 √ Direction
: 1 √ response_format
: 1 √ Status

1 The length of this field is variable.
2 Refer to the figures of search_for, search_in and search_point fields described below.

Figure 9.21 – SEARCH DESCRIPTOR control command frame

9.10.1.1 Field definit ions

search_for: The search_for operand specifies what the controller would like the unit or subunit to search
for. This operand has the following format:

address
offset

bytes ck msb Lsb

0016 1 √ Length
0116

: See1 – search_data
:

1 The length of this field is variable

Figure 9.22 – Search_for operand of SEARCH DESCRIPTOR control command

length: The length operand specifies the number of bytes for the following search_data operand.
To perform a wild card search on the search_data operand, the controller can set the length

AV/C Descriptor Mechanism Specification Version 1.0 TA Document 1999025, July 23, 2001

Page 112 Copyright  2001, 1394 Trade Association. All rights reserved.

operand to 0 and not include any search_data. The wildcard search is useful for searching through
all object IDs, entry types, and list types in descriptors.

search_data: The search_data operand contains the subject of the search. These bytes can
represent text such as “CNN” or any numeric value.

search_in: The search_in operand specifies the location and scope of the search. The controller is not
required to have read or read/write access to the descriptor space indicated by search_in, in order to request
the search. The unit or subunit shall search through all descriptors that match the search_in operand, even if
they are open for modification by a controller.

This operand has the following format:

address
offset

bytes ck msb lsb

0016 1 √ Length
0116 1 √ Type
0216

: See1 – type_specific_info
:

1 The length of this field is variable

Figure 9.23 – Search_in operand of SEARCH DESCRIPTOR control command

length: The length operand specifies the number of bytes in the type_specific_info operand.

type: The type operand specifies the type of specification for the search location. It can have one
of the following values:

Table 9.39 – Type value for search_in

Type for
search_in

Meaning

1016 List descriptors

2016 Entry descriptors

3016 Other descriptors

5016 Fields specified by an offset address and length in list
descriptors

5216 list_type fields in list descriptors

6016 Fields specified by an offset address and length in entry
descriptors

6216 entry_type fields in entry descriptors

6416 child_list_ID fields in entry descriptors

6616 object_ID fields in entry descriptors

7016 Fields specified by an offset address and length in Other
Descriptors

all others reserved for future specification

type_specific_info: The type_specific_info operand specifies the scope and location of the search.
Its format is defined by the type values in the table above. The type_specific_info operand is

TA Document 1999025, July 23, 2001 AV/C Descriptor Mechanism Specification Version 1.0

 Copyright  2001, 1394 Trade Association. All rights reserved. Page 113

specified below for each of the type values in clause 9.10.2 “Type_specific_info for the search_in
operand” on page 116.

start_point: The start_point operand specifies where to begin the search. It has the following basic
structure:

address
offset

bytes ck msb Lsb

0016 1 √ Length
0116 1 √ Type
0216

: See1 – type_specific_info
:

1 The length of this field is variable

Figure 9.24 – Start_point operand of SEARCH DESCRIPTOR control command

length: The length operand specifies the number of bytes in the type_specific_info operand.

type: The type operand specifies how the starting point is indicated, in the type_specific_info
operand.

AV/C Descriptor Mechanism Specification Version 1.0 TA Document 1999025, July 23, 2001

Page 114 Copyright  2001, 1394 Trade Association. All rights reserved.

Table 9.40 – Type values for start_point

Type for
start_point

Starting Point for the Search

0016 The controller does not care where the start point is – the
(sub)unit chooses where to start the search operation.

0216 At the “current location”, where the current location is defined by
the currently selected entry descriptor.

0316 At the “current location”, where the current location is defined by
the position of the last search result.

1016 At the point specified by an offset address in the list descriptor,
where the list is specified by its list ID.

1116 At the list_type field in the specified list descriptor, where the list
is specified by its list ID.

2016 At the point specified by an offset address in the specified entry
descriptor, where the entry is specified by entry_position.

2116 At the point specified by an offset address in the specified entry
descriptor, where the entry is specified by object_ID.

2216 At the entry_type field in the specified entry descriptor, where
the entry is specified by entry_position.

2316 At the entry_type field in the specified entry descriptor, where
the entry is specified by object_ID.

2416 At the child_list_ID field in the specified entry descriptor, where
the entry is specified by entry_position.

2516 At the child_list_ID field in the specified entry descriptor, where
the entry is specified by object_ID.

2616 At the object_ID field in the specified entry descriptor, where the
entry is specified by entry_position.

2716 At the object_ID field in the specified entry descriptor, where the
entry is specified by object_ID.

3016 At the point specified by an offset address in the Other
Descriptor, where that descriptor is specified by a
descriptor_specifier structure.

all others reserved for future specification

type_specific_info: The type_specific_info operand indicates the starting point. Its format depends
on the value of the type operand. The type_specific_info operand is specified below for each of the
type values in clause 9.10.2 “Type_specific_info for the search_in operand” on page 116.

direction: The direction operand specifies how the search should proceed, as indicated in the following
table:

TA Document 1999025, July 23, 2001 AV/C Descriptor Mechanism Specification Version 1.0

 Copyright  2001, 1394 Trade Association. All rights reserved. Page 115

Table 9.41 – Direction operand meanings

Direction Meaning

0016 The controller does not care about the direction of the search -
the (sub)unit chooses the direction.

1016 Up - in the increasing order of the search_for specifier.

1216 Up - in the increasing order of the search_for specifier, based
on the entry_position.

1316 Up - in the increasing order of the search_for specifier, based
on the object_ID.

2016 Down - in the decreasing order of the search_for specifier.

2216 Down - in the decreasing order of the search_for specifier,
based on the entry_position.

2316 Down - in the decreasing order of the search_for specifier,
based on the object_ID.

all others reserved for future specification

The order of searching, as specified by the direction operand, has the following rules:

Table 9.42 – Order of searching rules

search_in Rules for Search Direction

a field

An entry descriptor

a list descriptor

The address value within the field using the increasing direction
=1016, or the decreasing direction =2016

fields in entries The entry_position value using the increasing direction =1216, or
the decreasing direction = 2216

entries The object_ID value using the increasing direction =1316, or
decreasing direction = 2316

fields in lists

lists

The list ID value using the increasing direction = 1016, or
decreasing direction = 2016

response_format: The response_format operand specifies how the controller would like the return data to
be presented, as defined in the following table:

AV/C Descriptor Mechanism Specification Version 1.0 TA Document 1999025, July 23, 2001

Page 116 Copyright  2001, 1394 Trade Association. All rights reserved.

Table 9.43 – Response_format operand

Response_
format

Meaning

0016 Not specified - the (sub)unit may choose how to present the
data. This is also called the “don’t care” response.

1016 By descriptor_specifier_type 1016 (specified by list ID)

1116 By descriptor_specifier_type 1116 (specified by list_type)

2016 By descriptor_specifier_type 2016 (entry_position)

2116 By descriptor_specifier_type 2116 (object_ID)

all others reserved for future specification

status: The status operand is set to FF16 by the controller in the control frame. It is updated in the
ACCEPTED response frame to indicate the result of the search operation.

9.10.2 Type_specif ic_info for the search_in operand

The following diagrams illustrate the format of the type_specific_info fields of the search_in operand.
These fields are defined by the type field of the search_in operand.

9.10.2.1 Supporting data structures

Many of the type_specific_info structures for the search_in operand make use of the
entry_descriptor_specifier and the list_descriptor_specifier. Other data structures include the standard
descriptor_specifier and an offset and length structure. All are described below.

9.10.2.1.1 Entry_descriptor_specif ier

The entry_descriptor_specifier is a data structure that specifies an entry. In the context of the search_in
operand, it specifies an entry or a collection of entries in which the search operation should be performed. It
has the following format:

address
offset

Bytes msb lsb

0016 1 Type
:
: See1 type_specific
:

1 The length of this field is variable

Figure 9.25 – Entry_descriptor_specifier

type: The type field defines how the entry(s) is indicated in the type_specific field.

type_specific: The following table illustrates the relationship between the type and type_specific fields:

TA Document 1999025, July 23, 2001 AV/C Descriptor Mechanism Specification Version 1.0

 Copyright  2001, 1394 Trade Association. All rights reserved. Page 117

Table 9.44 – Relationship between type and type_specific fields

Type Meaning type_specific Field Size of type_specific Field

2016 A specified entry (by position) entry_position k bytes (see NOTE below)

2116 A specified entry (by object_ID) Object_ID k bytes (see NOTE below)

2216 Any entries with the specified
entry_type field

Entry_type 1 byte

2F16 Any entries None zero bytes

all others Reserved for future specification --------------- ---------------

NOTE — When an entry is specified by its object ID, the size of the type_specific field is indicated by the
size_of_object_ID field of the (sub)unit identifier descriptor. When an entry is specified by its entry position, the size of
the type_specific field is indicated by the size_of_entry_position field of the (sub)unit identifier descriptor.

9.10.2.1.2 List_descriptor_specif ier

The list_descriptor_specifier is a data structure that identifies a list descriptor (or more than one list). In the
context of the search_in operand, it specifies the list or a collection of lists in which the search operation
should be performed. It has the following format:

Address
offset

bytes msb lsb

0016 1 type
:
: see1 Type_specific
:

1 The length of this field is variable

Figure 9.26 – List_descriptor_specifier

type: The type field defines how the list(s) are indicated in the type_specific field.

type_specific: The following table illustrates the relationship between the type and type_specific fields:

Table 9.45 – Relationship between type and type_specific fields

Type Meaning type_specific Field Size of type_specific Field

1016 A specified list (by child or root list
ID)

Child_list_ID or
root_list_ID

n bytes (see Note below)

1216 Any lists with the specified list_type list_type 1 byte

all others Reserved for future specification --------------- ---------------

NOTE — The number of bytes for the type_specific field when using a list ID will depend on the size_of_list_ID
field of the target’s (sub)unit identifier descriptor.

9.10.2.1.3 Descriptor_specif ier

The general descriptor_specifier structure is already defined. For the SEARCH DESCRIPTOR control
command, it is used to specify one of the (non-entry and non-list) descriptor structures (such as the
(sub)unit identifier descriptor) in which the search operation is to be performed.

AV/C Descriptor Mechanism Specification Version 1.0 TA Document 1999025, July 23, 2001

Page 118 Copyright  2001, 1394 Trade Association. All rights reserved.

9.10.2.1.4 Offset_address and length

The offset_address field specifies the starting address within the specified descriptor structure to begin the
search. This field is always 2 bytes in length.

The length field specifies the number of bytes over which to perform the search. This field is always 1 byte
in length.

9.10.2.2 Type_specif ic_info data structures

address
offset

Bytes msb lsb

0016
: See1 list_descriptor_specifier
:

1 The length of this field is variable

Figure 9.27 – Type_specific_info for the search_in operand, type 1016

address
offset

Bytes msb lsb

0016
: See1 list_descriptor_specifier
:
:
: See1 entry_descriptor_specifier
:

1 The length of this field is variable

Figure 9.28 – Type_specific_info for the search_in operand, type 2016

address
offset

Bytes msb lsb

0016
: See1 descriptor_specifier
:

1 The length of this field is variable

Figure 9.29 – Type_specific_info for the search_in operand, type 3016

address

offset
Bytes msb lsb

0016
: See1 list_descriptor_specifier
:
: 2 offset_address
:
: 1 Length

1 The length of this field is variable

Figure 9.30 – Type_specific_info for the search_in operand, type 5016

TA Document 1999025, July 23, 2001 AV/C Descriptor Mechanism Specification Version 1.0

 Copyright  2001, 1394 Trade Association. All rights reserved. Page 119

Address
offset

bytes msb lsb

0016
: See1 list_descriptor_specifier
:

1 The length of this field is variable

Figure 9.31 – Type_specific_info for the search_in operand, type 5216

Address
offset

bytes msb lsb

0016
: See1 list_descriptor_specifier
:
:
: See1 entry_descriptor_specifier
:
: 2 Offset_address
:
: 1 length

1 The length of this field is variable

Figure 9.32 – Type_specific_info for the search_in operand, type 6016

Address
offset

bytes msb lsb

0016
: See1 list_descriptor_specifier
:
:
: See1 entry_descriptor_specifier
:

1 The length of this field is variable

Figure 9.33 – Type_specific_info for the search_in operand, type 6216

Address
offset

bytes msb lsb

0016
 See1 list_descriptor_specifier

 See1 entry_descriptor_specifier

1 The length of this field is variable

Figure 9.34 – Type_specific_info for the search_in operand, type 6416

AV/C Descriptor Mechanism Specification Version 1.0 TA Document 1999025, July 23, 2001

Page 120 Copyright  2001, 1394 Trade Association. All rights reserved.

address
offset

Bytes msb lsb

0016
: See1 list_descriptor_specifier
:
:
: See1 entry_descriptor_specifier
:

1 The length of this field is variable

Figure 9.35 – Type_specific_info for the search_in operand, type 6616

address

offset
bytes msb lsb

0016
: See1 descriptor_specifier
:
: 2 offset_address
:
: 1 Length

1 The length of this field is variable

Figure 9.36 – Type_specific_info for the search_in operand, type 7016

9.10.3 Type_specif ic_info for the start_point operand

The following diagrams illustrate the format of the type_specific_info fields of the start_point operand.
These fields are defined by the type field of the start_point operand.

9.10.3.1 Supporting data structures

The type_specific_info structures of the start_point operand make use of the descriptor_specifier,
including those for the entry and list descriptors. Note that this is different from the search_in operand,
which by necessity had to define its own entry and list descriptor specifiers.

Some of the type_specific_info structures of the start_point operand also make use of an address_offset
field. This offset is from the beginning of the descriptor structure specified in the start_point operand.

The entry_type field used in some of the structures refers to the type of entry, as defined by the entry_type
field of the entry descriptor structures.

9.10.3.2 Type_specif ic_info data structures

address
offset

bytes msb lsb

------ ------ There is no type_specific_info for type 0016

Figure 9.37 – Type_specific_info for the start_point operand, type 0016

TA Document 1999025, July 23, 2001 AV/C Descriptor Mechanism Specification Version 1.0

 Copyright  2001, 1394 Trade Association. All rights reserved. Page 121

address
offset

bytes msb lsb

------ ------ There is no type_specific_info for type 0216

Figure 9.38 – Type_specific_info for the start_point operand, type 0216

address
offset

bytes msb lsb

------ ------ There is no type_specific_info for type 0316

Figure 9.39 – Type_specific_info for the start_point operand, type 0316

address
offset

bytes msb lsb

0016
 See1 descriptor_specifier for a list specified by list ID

 2 Offset_address

1 The length of this field is variable

Figure 9.40 – Type_specific_info for the start_point operand, type 1016

address
offset

bytes msb lsb

0016
 See1 descriptor_specifier for a list specified by list ID

1 The length of this field is variable

Figure 9.41 – Type_specific_info for the start_point operand, type 1116

address
offset

bytes msb lsb

0016
: See1 descriptor_specifier for an entry position reference
:
: 2 Offset_address
:

1 The length of this field is variable

Figure 9.42 – Type_specific_info for the start_point operand, type 2016

AV/C Descriptor Mechanism Specification Version 1.0 TA Document 1999025, July 23, 2001

Page 122 Copyright  2001, 1394 Trade Association. All rights reserved.

address
offset

bytes msb lsb

0016
: See1 descriptor_specifier for an object_ID reference
:
: 2 offset_address
:

1 The length of this field is variable

Figure 9.43 – Type_specific_info for the start_point operand, type 2116

address
offset

bytes msb lsb

0016
: See1 descriptor_specifier for an entry position reference
:
: 1 entry_type

1 The length of this field is variable

Figure 9.44 – Type_specific_info for the start_point operand, type 2216

address
offset

bytes msb lsb

0016
: See1 descriptor_specifier for an object_ID reference
:
: 1 entry_type

1 The length of this field is variable

Figure 9.45 – Type_specific_info for the start_point operand, type 2316

address
offset

bytes msb lsb

0016
: See1 descriptor_specifier for an entry position reference
:

1 The length of this field is variable

Figure 9.46 – Type_specific_info for the start_point operand, type 2416

address
offset

bytes msb lsb

0016
: See1 descriptor_specifier for an object_ID reference
:

1 The length of this field is variable

Figure 9.47 – Type_specific_info for the start_point operand, type 2516

TA Document 1999025, July 23, 2001 AV/C Descriptor Mechanism Specification Version 1.0

 Copyright  2001, 1394 Trade Association. All rights reserved. Page 123

address
offset

bytes msb lsb

0016
: See1 descriptor_specifier for an entry position reference
:

1 The length of this field is variable

Figure 9.48 – Type_specific_info for the start_point operand, type 2616

address
offset

bytes msb lsb

0016
: See1 descriptor_specifier for an object_ID reference
:

1 The length of this field is variable

Figure 9.49 – Type_specific_info for the start_point operand, type 2716

address
offset

bytes msb lsb

0016
: See1 descriptor_specifier “other” descriptor
:
: 2 Offset_address
:

1 The length of this field is variable

Figure 9.50 – Type_specific_info for the start_point operand, type 3016

9.10.4 Examples of the SEARCH DESCRIPTOR control command
(Informative)

This clause presents some examples of how to use the SEARCH DESCRIPTOR control command for
various types of searches. For those examples that refer to a specific type of (sub)unit, supporting
information may be found in the unit or subunit-type specification.

9.10.4.1 Example 1: Search for the service_name “NHK” in all DVB service
l ists (tuner subunit)

This example demonstrates how an arbitrary field of an entry descriptor structure can be searched, looking
for a specified value. This type of search could be used to find fields, which may be unknown to the target
subunit.

The control command frame for this search would be defined as follows:

AV/C Descriptor Mechanism Specification Version 1.0 TA Document 1999025, July 23, 2001

Page 124 Copyright  2001, 1394 Trade Association. All rights reserved.

 msb lsb
opcode SEARCH DESCRIPTOR (0B16)

operand[0] search_for (0316) length
operand[1] (4E16) “N”
operand[2] (4816) “H”
operand[3] (4B16) “K”
operand[4] search_in (0716) length
operand[5] (6016) type: search in specified fields
operand[6] (1216) in any lists with the specified list_type field
operand[7] (8216) list_type: service
operand[8] (2F16) search in any entries in the lists
operand[9] (0016) offset address...

operand[10] (1916) ...for the service_name field
operand[11] (0316) length
operand[12] start_point (0016) not specified - subunit chooses
operand[13] direction (0016) not specified – subunit chooses
operand[14] response_format (2116) return the data as an object_ID reference
operand[15] status (FF16)

Figure 9.51 – SEARCH DESCRIPTOR control command frame, example 1

9.10.4.2 Example 2: Search for the next service entry in the service l ists
(tuner subunit)

This example shows how to search on one of the basic fields defined for all entry descriptor structures. This
type of search is useful for well-defined fields that all target subunits must know about.

The control command frame for this type of search would appear as follows:

 msb lsb
opcode SEARCH DESCRIPTOR (0B16)

operand[0] search_for (0016) not specified
operand[1] search_in (0416) length
operand[2] (6616) type: search in object_ID fields
operand[3] (1216) in any lists with the specified list_type field
operand[4] (8216) list_type: service
operand[5] (2F16) search in any entries in the lists
operand[6] start_point (0216) start at the currently selected entry
operand[7] direction (1316) search up (increasing order of object_ID value)
operand[8] response_format (2116) return the data as an object_ID reference
operand[9] status (FF16)

Figure 9.52 – SEARCH DESCRIPTOR control command frame, example 2

9.10.4.3 Example 3: Search for the parent entry of the service l ist with l ist
ID 20001 6 (tuner subunit)

The control command frame for this type of search would appear as follows:

TA Document 1999025, July 23, 2001 AV/C Descriptor Mechanism Specification Version 1.0

 Copyright  2001, 1394 Trade Association. All rights reserved. Page 125

 msb lsb
opcode SEARCH DESCRIPTOR (0B16)

operand[0] search_for (0216) length
operand[1] (2016) “20”
operand[2] (0016) “00”
operand[3] search_in (0416) length
operand[4] (6416) type: search in child_list_ID fields
operand[5] (1216) in any lists with the specified list_type field
operand[6] (8016) list_type: multiplex
operand[7] (2F16) search in any entries in the lists
operand[8] start_point (0016) not specified - subunit chooses the start point
operand[9] direction (0016) not specified - subunit chooses the direction

operand[10] response_format (2016) return the data as an entry position reference
operand[11] Status (FF16)

Figure 9.53 – SEARCH DESCRIPTOR control command frame, example 3

AV/C Descriptor Mechanism Specification Version 1.0 TA Document 1999025, July 23, 2001

Page 126 Copyright  2001, 1394 Trade Association. All rights reserved.

9.11 OBJECT NUMBER SELECT command

The OBJECT NUMBER SELECT command is a unit/subunit command (See footnote3), and performs a
selection of an entry (or many entries), and routes the data that the entry represents to a subunit source plug.
This is achieved by specifying, for each desired entry, either a path to that entry in its list, or a direct
specification of that entry, if the entry is unique within its unit or subunit. The type of unit or subunit
receiving the command will define the nature of what it means to “select” an entry. For details on subunit-
specific functionality, please refer to the OBJECT NUMBER SELECT reference in the appropriate
subunit-type specifications.

The OBJECT NUMBER SELECT command supports descriptor specifiers 0016, 1016, 1116, 2016, 2116, 2316,
3016, 3116 and 8016 – BF16. See section 8.2 and the sections below for details.

9.11.1 OBJECT NUMBER SELECT control command

The general operation of OBJECT NUMBER SELECT is to allow the controller to specify which entry(s)
to select, a subunit source plug that should receive the data from the entry(s), and a subfunction which
modifies the command in a subunit-specific way. The format of the OBJECT NUMBER SELECT control
command frame is as follows:

 bytes ck msb lsb
opcode 1 √ OBJECT NUMBER SELECT (0D16)

operand[0] 1 √ Source_plug
operand[1] 1 √ Subfunction
operand[2] 1 √ Status
operand[3] 1 – number_of_ons_selection_specifications (n)
operand[4]

: See1 – ons_selection_specification[0]
:
:
: - - :
:
: See1 – ons_selection_specification[n - 1]
:
:

1 The length of this field is variable

Figure 9.54 – OBJECT NUMBER SELECT control command frame

9.11.1.1 Field definit ions

source_plug: the source_plug operand indicates the subunit source plug number which shall output the
specified entry(s). Values for plug addresses are shown by Table 9.46.

3 Though this is a unit/subunit command, it presently doesn’t support being addressed to a unit.

TA Document 1999025, July 23, 2001 AV/C Descriptor Mechanism Specification Version 1.0

 Copyright  2001, 1394 Trade Association. All rights reserved. Page 127

Table 9.46 – AV/C Subunit Plug Address

source_plug Source Plug

0016 – 1E16 Source Plug 0 – 30
1F16 – FC16 Reserved for future Specification

FD16 Reserved for future Specification
FE16 Do not output
FF16 Any available source plug

The plug value FE16 is a special case; it means that the specified item(s) should be “selected”, but not
output to any plug. This is used when the controller does not want the selection specification to affect the
output signal. An example is the case of a CD changer subunit; selecting a CD would mean that the CD is
taken from the changer and placed into the player mechanism and has no meaning for the output signal.

subfunction: The subfunction field specifies the operation of the CONTROL command. The general AV/C
model defines a set of subfunctions for this command, but the meaning of “selection” may vary according
to the type of unit or subunit receiving this command. Different types of subunits may not be able to
support all of the general subfunctions. Subunit type specifications shall not define new subfunctions.
Please refer to the appropriate unit or subunit-type specification document for specific details of the
subfunctions supported by that subunit type, and what those subfunctions mean for that subunit type.

For the general AV/C model, the following subfunctions are defined. Note that the description of what
action to take refers to the output signal, but the same concepts are applicable to the non-output signal, plug
FE16 cases:

Table 9.47 – Subfunctions for the general AV/C model

subfunction Meaning Action

C016 clear Stop the output of all selections on the specified plug. No selection specifiers
shall be included in the command frame for this subfunction.

D016 remove Remove the specified selection from the output stream on the specified plug.

D116 append Add (multiplex) the specified selection(s) to the current output.

D216 replace Remove the current selection(s) from the specified plug, and output or
multiplex the specified selection(s).

D316 new Output the specified selection(s) on the specified plug if the plug is currently
unused; otherwise, return a REJECTED response to the selection command.

all others X reserved for future specification.

status: The status field shall be set to FF16 on input to the CONTROL command.

number_of_ons_selection_specifications: The number_of_ons_selection_specifications operand shows
the number of ONS selection specifiers that are provided in the parameter block.

ons_selection_specification[x]: The ons_selection_specification[x] operands each define a single entry to
be selected. The ons_selection_specification structure has two basic forms: a full path specification from
the root of a descriptor hierarchy down to the entry being selected; and a “don’t care” version of this
specifier which does not indicate a path to an entry. These are illustrated in the following clauses.

Some of the contents of this specification will vary based on the type of subunit which is receiving this
command. For details on subunit-specific descriptors, please refer to the OBJECT NUMBER SELECT
reference in the appropriate subunit-type specific clauses.

AV/C Descriptor Mechanism Specification Version 1.0 TA Document 1999025, July 23, 2001

Page 128 Copyright  2001, 1394 Trade Association. All rights reserved.

9.11.1.2 Subfunction implementation rules

The following rules shall be adhered to when a subunit implements the OBJECT NUMBER SELECT
command subfunctions. Note that some subunit-type specifications may add further rules, but they shall not
conflict with these general rules:

1) The remove subfunction shall be REJECTED if the specified information instances are not present
on the specified output plug.

2) If a controller wants to be sure that it is making a selection on an unused plug, then it should use
the new subfunction to establish an initial selection on that plug. Subsequent selections may be
appended to that plug.

9.11.1.3 The general ons_selection_specif ication structure

The general ons_selection_specification is as follows:

offset bytes msb lsb
0016 2 root_list_ID

:
: 1 selection_indicator
: 1 target_depth (m)
:
: see1 path_specifier[0]
:
: :
:
: see1 path_specifier[m-1]
:
:
: see2 Target
:
:

1 The length of this field depends on the descriptor_specifier_type.
2 See Figure 9.56 on page 129.

Figure 9.55 – General ons_selection_specification (full path specification)

The fields of this ons_selection_specification define exactly one path, among possibly many, to the desired
entry being selected. This is necessary because in general, an entry may have more than one parent and
hence more than one path specification.

root_list_ID: The root_list_ID field contains the ID of the root list that defines the beginning of the path.
This list must be the top of a descriptor hierarchy (e.g., it must be referenced from the (sub)unit identifier
descriptor). The root lists will have fixed or well-known ID values.

selection_indicator: The selection_indicator field indicates how the entry references are specified, either
by position or unique object ID. Each path_specifier and the target must be specified in the same manner.
The selection_indicator field is encoded as follows:

TA Document 1999025, July 23, 2001 AV/C Descriptor Mechanism Specification Version 1.0

 Copyright  2001, 1394 Trade Association. All rights reserved. Page 129

Table 9.48 – Selection_indicator field encoding

selection_
indicator

Meaning

1xxx xxxx descriptor_specifier_type_flag: when set to 1, this indicates that the
path specifiers and the specifiers in the target are by object ID. When it is
0, it indicates that the path specifiers and specifiers in the target are by
entry position.

xxxx xxx1 target_format_flag - this flag indicates the format of the target field.
When set to 1, this flag indicates that the target is to be selected using
specified CHILDREN of that entry. When this flag is zero, then the entire
entry is to be selected (no specific CHILDREN are specified). Please see
the example selections for details.

all others reserved for future specification.

target_depth: The target_depth field indicates how deep in the descriptor hierarchy to go in order to find
the list which holds the target entries(s) to be selected. The root of the descriptor hierarchy has a depth of
zero.

path_specifier[x]: The path_specifier[x] fields are descriptor_specifier data structures (see section 8.1 for
more information) that appear in order from the top of the descriptor hierarchy down. A level corresponds
to a list, and each path_specifier indicates an entry in the list at that level of the descriptor hierarchy. The
root has level zero. Since the path specification always starts with the root list and an entry in that list, and
since an entry always contains exactly zero or one child reference, we always know exactly which list we
are looking in and what the next list is that we will be looking at. If the value of the target_depth is zero,
then the path specifier fields don’t exist.

target: The target field will indicate which entry is to be selected from the target level list indicated by the
path specification as follows:

offset bytes msb lsb
0016

: see2 target_object_reference
:
:
: 1 Number_of_children (m)1
:
: see2 child_object_reference [0]1
:
: :
:
: see2 child_object_reference [m - 1]1
:

1 Present only when target_format_flag selection indicator is 1.
2 The length of this field depends on the descriptor_specifier_type.

Figure 9.56 – Format of the target field (full path specification)

Target_object_reference, child_object_reference: The target_object_reference and
child_object_reference fields are descriptor_specifier structures for entry descriptors.

The format of the target field shall be defined in subunit-specific ways.

AV/C Descriptor Mechanism Specification Version 1.0 TA Document 1999025, July 23, 2001

Page 130 Copyright  2001, 1394 Trade Association. All rights reserved.

9.11.1.4 The “don’t care” specif ication

In some cases a controller may know the unique object ID of an item that it wants to select, and it does not
need to traverse a descriptor hierarchy to find it. In some cases, the controller may not be able to determine
an exact path for the item that it wants, and is willing to accept whatever path, among possibly many, the
subunit may choose. In other situations, the particular technology may be defined with non-ambiguous
paths among all levels of the descriptor hierarchy so a full path specification is not required.

In these cases, the controller may not want to or may not be able to fill out a full path specification for the
ons_selection_specification. For this, we define the “don’t care” specification, which only points at the
entry to be selected. The format of the “don’t care” ons_selection_specification is as follows:

offset bytes msb lsb
0016 2 root_list_ID

:
: 1 selection_indicator
: 1 target_depth (m) = FF16
:
: see1 Target
:
:

1 1 See section 8.2.7, “Entry descriptor specified only by object_ID” on page 54.
Figure 9.59 on page 131 and 1 See section 8.2.4, “Entry descriptor specified by position in its list” on page 52.
Figure 9.58 on page 131.

Figure 9.57 – ons_selection_specification (“don’t care” specification)

root_list_ID: The root_list_ID specifies the root list of the descriptor hierarchy from which the entries will
be selected. This narrows down the scope of where an entry with a given object ID is located.

selection_indicator: The selection_indicator field is described in the table below. For the don’t care
specification, the target_depth field shall be FF16.

Table 9.49 – Selection_indicator for the “don’t care” specification

selection_
indicator

Meaning

1xxx xxxx descriptor_specifier_type_flag: When set to 1, this indicates that the
specifiers in the target are by list type and object ID. When it is 0, it
indicates that the specifiers in the target are by list ID and entry position.

xxxx xxx1 target_format_flag: This flag indicates the format of the target field.
When set to 1, this flag indicates that the target is to be selected using
specified CHILDREN of that entry. When this flag is zero, then the entire
entry is to be selected (no specific CHILDREN are specified). Please see
the example selections for details.

all others reserved for future specification

When the descriptor_specifier_type_flag is zero, then the target field shall have the following format:

TA Document 1999025, July 23, 2001 AV/C Descriptor Mechanism Specification Version 1.0

 Copyright  2001, 1394 Trade Association. All rights reserved. Page 131

offset bytes msb lsb
0016 2 list ID

:
: see1 target_object_reference
: (entry_position)
: 1 Number_of_children (m)
:
: see1 child_object_reference[0]
: (entry_position)
: :
:
: see1 child_object_reference[m - 1]
: (entry_position)

1 See section 8.2.4, “Entry descriptor specified by position in its list” on page 52.

Figure 9.58 – Target field (“don’t care” specification) when descriptor_specifier_type_flag = 0

In the above diagram, the fields from number_of_children through child_object_reference[m - 1] exist only
if the target_format_flag is set to one.

When the specifer_type_flag is one, then the target field shall have the following format:

offset bytes msb lsb
0016 1 list_type
0116 target_object_reference

: see1
: (object_ID)
: 1 Number_of_children (m)
:
: see1 child_object_reference[0]
: (object_ID)
: :
:
: see1 child_object_reference[m - 1]
: (object_ID)

1 See section 8.2.7, “Entry descriptor specified only by object_ID” on page 54.

Figure 9.59 – Target field (“don’t care” specification) when descriptor_specifier_type_flag = 1

In the above diagram, the fields from number_of_children through child_object_reference[m - 1] exist only
if the target_format_flag is set to one.

9.11.1.5 OBJECT NUMBER SELECT control command responses

For all responses, the response frame shall consist only of the first three fields (up to the status field). All
other fields of the CONTROL command frame shall not be returned. In case of the INTERIM or
REJECTED responses, the contents of the status field shall be set to FF16. The following table summarizes
the commands and responses of this command.

AV/C Descriptor Mechanism Specification Version 1.0 TA Document 1999025, July 23, 2001

Page 132 Copyright  2001, 1394 Trade Association. All rights reserved.

Table 9.50 – Field values in the OBJECT NUMBER SELECT control command: REJECTED, INTERIM
and ACCEPTED response frames

Fields Command Response

 REJECTED INTERIM ACCEPTED

output/source_plug See Table 9.46 ← ← ←

subfunction See Table 9.47 ← ← ←

status FF16 ← ← see Table
9.51

number_of_ons_selection_
specifications (n)

 N/A N/A N/A

ons_selection_
specifications [x]

Specific entry(s) N/A N/A N/A

← means “same as the command frame”

In the ACCEPTED response frame, the status field shall be updated with the appropriate value as defined
here:

Table 9.51 – STATUS value in ACCEPTED response frame

status Meaning

0016 The selection specification indicated a unique item, which was selected.

0116 The selection specification was ambiguous, so the unit or subunit selected one (please
refer to the “don’t care” path specification description).

all others reserved for future specification.

9.11.1.6 Object selection examples

The following diagrams illustrate various types of entry selection, as indicated by the selection_indicator
described above.

Example 1 shows the selection of an entire entry (S7) with the entry reference being the object ID. The
results of the selection will be entry S7 composed of all three of its children (C5, C6 and C7).

Example 2 shows the selection of the same entry (S7), but this time it will be composed of only children C5
and C6.

These are the two ONS selection methods defined for the general AV/C list model. Specific types of
subunits (such as tuners) may define additional selection methods.

TA Document 1999025, July 23, 2001 AV/C Descriptor Mechanism Specification Version 1.0

 Copyright  2001, 1394 Trade Association. All rights reserved. Page 133

C1 C2 C3 C4
2003

0 1 2 3

C5 C6 C7
2004

0 1 2

C8 C9 C10 C11
2005

0 1 2 3

path [0]

path [1]

path [2]

S1 S2

2000

0 1

S3 S4 S5 S6

2001

0 1 2 3

S7 S8 S9

2002

0 1 2

M1 M2 M3
1000

1 20

root_list

0

entry_position = 0

list_ID = 2002

list_type = S object_ID = 7

2002

S7
Legend for this example:

Example 1: ons_selection_specification for the entry “S7”

root_list_ID

selection_indicator

target_depth

path [0]

target

10

00

1xxx xxx0

01

00

00

00

03

00

00

00

07

Notes

list ID = 1000

specifier_type flag = by object ID

target_format_flag = without children

path [0] (object ID = 3)

target (object ID = 7)

AV/C Descriptor Mechanism Specification Version 1.0 TA Document 1999025, July 23, 2001

Page 134 Copyright  2001, 1394 Trade Association. All rights reserved.

Example 2: ens_selection_specification for the entry “S7” using specified children

Field

root_list_ID

selection_indicator

target_depth

path [0]

target

number_of_children

child[0]

child [1]

Value

10

00

1xxx xxx1

01

00

00

00

03

00

00

00

07

02

00

00

00

05

00

00

00

06

Notes

list ID = 1000

reference_type flag = by object ID

target_format_flag = using specified children

(object ID = 3)

(object ID = 7)

the target consists of two children

the object ID in the child list = 5

the object ID in the child list = 6

In example 2, we specify how to create the desired entry by specifying a subset of its child entries (the
entries from its child list). Note that when specifying the path, we stop at the target entry and do not go
down to the child list level. Because there is only one child list for the target entry, there is no ambiguity;
we then just specify which child entries to use from the implied child list. In this example, all references
(including the child references) were defined using object ID.

9.11.1.7 Entry selection semantics

The semantics of selecting an entry from a list will vary based on the kind of subunit being controlled, the
nature of the data relationships that are involved, and the details provided in the entry_selection_reference
field. There are some general rules defined for all lists in the AV/C model, and specific types of subunits
may add further definitions.

TA Document 1999025, July 23, 2001 AV/C Descriptor Mechanism Specification Version 1.0

 Copyright  2001, 1394 Trade Association. All rights reserved. Page 135

9.11.2 OBJECT NUMBER SELECT status command

OBJECT NUMBER SELECT command may also be used with a ctype of STATUS, in which case the
ons_selection_specifications of the currently selected information instances on the specified source plug are
returned. The format of the OBJECT NUMBER SELECT status command is shown by the figure below:

 bytes ck msb lsb
opcode 1 √ OBJECT NUMBER SELECT (0D16)

operand[0] 1 √ source_plug
operand[1] 1 √ status = FF16

Figure 9.60 – OBJECT NUMBER SELECT status command frame

9.11.2.1 Field definit ions

source_plug: The source_plug operand indicates the subunit plug number for which status is being
requested.

9.11.2.2 OBJECT NUMBER SELECT status Responses

If the subunit is able to return a STABLE response to the OBJECT NUMBER SELECT status command,
the AV/C response frame has the format illustrated by the figure below:

 bytes msb lsb
opcode 1 OBJECT NUMBER SELECT (0D16)

operand[0] 1 source_plug
operand[1] 1 Status
operand[2] 1 number_of_ons_selection_specifications (n)
operand[3]

: see1 ons_selection_specification[0]
:
:
: :
:
: see1 ons_selection_specification[n - 1]
:
:

1 The length of this field is variable.

Figure 9.61 – OBJECT NUMBER SELECT status command: STABLE response frame

9.11.2.2.1 Field definit ions

status: The status field describes the current situation of the specified entry(s). The meaning of this field
will be subunit-type-specific. For details, please refer to the appropriate subunit-type-specific OBJECT
NUMBER SELECT command description.

All other operands are as described for the control command.

NOTE — There is no subfunction field in the status command.

AV/C Descriptor Mechanism Specification Version 1.0 TA Document 1999025, July 23, 2001

Page 136 Copyright  2001, 1394 Trade Association. All rights reserved.

Only entries which have an entry in the list(s) can be returned. For some types of subunits, it is possible to
direct data to a source plug by means other than using the ONS control command (for one example of this,
please refer to the DIRECT SELECT INFORMATION TYPE command in the tuner subunit specification).
In these cases, information about the ons_selection_specifications may not be returned by the ONS status
command. The controller must use the appropriate mechanisms to retrieve status information about
selections made via those other commands.

Table 9.52 – Field values in the OBJECT NUMBER SELECT status command: REJECTED, IN
TRANSITION and STABLE response frames

Fields Command Response

 REJECTED IN TRANSITION STABLE

source_plug See Table 9.46 ← ← ←

status FF16 ← See 1 See 1

number_of_ons_selection_
specifications

N/A N/A

ons_selection_specification[x] N/A N/A
1 Dependent on the unit or subunit-type specification.
← means “same as the command frame”

9.11.3 OBJECT NUMBER SELECT notify command

In addition, the OBJECT NUMBER SELECT notify command is also used so that the controller shall be
notified when the output of the specified source plug has changed. If the source plug has new data directed
to it using some means other than the ONS command, then a controller will not be notified. The
CHANGED response notification from ONS will only occur when the ONS command has been used to
change the source plug, or when the target must change the ONS selection(s) on the plug for internal
reasons (for example, if the data runs out). The controller must request notification for other changes to the
source plug using the appropriate mechanisms. The format of the OBJECT NUMBER SELECT notify
command frame is shown by the figure below:

 bytes ck msb lsb
opcode 1 √ OBJECT NUMBER SELECT (0D16)

operand[0] 1 √ source_plug
operand[1] 1 √ FF16

Figure 9.62 – OBJECT NUMBER SELECT notify command frame

9.11.3.1 Field definit ions

source_plug: The source_plug has the same meaning as in the STATUS command.

9.11.3.2 OBJECT NUMBER SELECT: NOTIFY responses

The format of associated INTERIM and CHANGED responses is the same as the OBJECT NUMBER
SELECT status response described above.

TA Document 1999025, July 23, 2001 AV/C Descriptor Mechanism Specification Version 1.0

 Copyright  2001, 1394 Trade Association. All rights reserved. Page 137

Annexes

Annex A: Anatomy of AV/C descriptor (informative)

This clause describes an anatomy of AV/C descriptor and info block structures. Each descriptor or info
block field contains either implicit or explicit length. If a controller does not have knowledge of a
descriptor or info block’s contents, the fields’ explicit length information could be used to skip over the
data, thus, allowing for backwards compatibility.

A controller that wishes to read or write to a descriptor must know about the format and content of the
descriptor’s specific information. A controller can determine if it knows about the format and content of the
descriptor’s (or info block’s) data by inspecting its type field. If the type field is recognized, it can expect a
particular format for its specific information. Though a controller could parse through a descriptor that it
doesn’t know about, it is unlikely that it will have any use for the information it contains.

A.1 Understanding descriptor and info block structure

AV/C descriptors were designed so that any legacy or future AV/C controller could navigate through
descriptor structures and info blocks without parsing failures. A controller can know what to expect from a
descriptor structure by reading the generation_ID in the (sub) unit identifier descriptor of the target. If the
generation_ID of the target is greater than that of the controller, then the controller should expect data
structures that contain some extended parts that it cannot understand. If the generation_ID is the same or
less, then the controller can expect that it will understand the descriptors presented.

The following figure shows the internal hierarchical levels of a list descriptor containing entry descriptors
and information blocks in the current unextended structure (generation_ID = 0216). This figure shows the
descriptor with length fields represented as lines that extend to the end of the blocks of data they represent.
Entry descriptors, info blocks, and information fields are all represented at different levels in an info block
hierarchy within the list descriptor.

AV/C Descriptor Mechanism Specification Version 1.0 TA Document 1999025, July 23, 2001

Page 138 Copyright  2001, 1394 Trade Association. All rights reserved.

list_type

info block type

info_block_type

list_descriptor_length

list_specific_inform ation_length

inform ation_fields_length

com pound_length

prim ary_fields_length

entry_descriptor_length

inform ation fields length

com pound_length

prim ary_fields_length

com pound_length(s)

com pound_length

entry_descriptor_length(s)

entry_descriptor_length

List Descriptor

attributes

entry_type

com pound_length(s)

com pound_length

list specific
inform ation

info block 1

...

info block n

Entry Descriptor
n

info block 1

...

info block n

...

Entry Descriptor
1

Legend

Data structure containing fields

Data field (fixed length)

nam e Length field specifying its extent

prim ary_fields

prim ary_fields

inform ation fields

inform ation fields

attributes...
(if extended)

attributes

num ber_of_entries

child_list_ID
(optional)
entry_ID
(optional)

optional fields

entry_specific_
inform ation

entry_specific_inform ation_length

Figure A.1 – Structure of list descriptor with entries and info blocks

Note that the overall AV/C descriptor and info block data structure includes a mixture of fields with fixed
length and data blocks with a variable length. Length fields precede all data blocks that have variable
length. All AV/C controllers and targets should know about fixed-length data fields, since they were
specified under generation_ID = 0.

TA Document 1999025, July 23, 2001 AV/C Descriptor Mechanism Specification Version 1.0

 Copyright  2001, 1394 Trade Association. All rights reserved. Page 139

Information block nesting is shown in the following figure.

info_block_type

compound_length

primary_fields_length

info block A

primary_fields
info block 1,

nested at level 2
info_block_type

primary_fields
Info block a,

nested at level 3
info_block_type

primary_fields

compound_length

primary_fields_length

compound_length

primary_fields_length
Info block b,

nested at level 3
info_block_type

primary_fields primary_fields_length

compound_length

info block 2,
nested at level 2

info_block_type

primary_fields
Info block a,

nested at level 3
info_block_type

primary_fields

primary_fields_length

compound_length

primary_fields_length
Info block b,

nested at level 3
info_block_type

primary_fields primary_fields_length

compound_length

Legend

Data structure containing fields Data field (fixed length)

name Length field specifying its extent

info_block_type

info block B

primary_fields

compound_length

primary_fields_length

compound_length

in
fo

 b
lo

ck
 2

's
ne

st
ed

 in
fo

 b
lo

ck
s

in
fo

 b
lo

ck
 1

's
ne

st
ed

 in
fo

 b
lo

ck
s

in
fo

 b
lo

ck
 A

's
ne

st
ed

 in
fo

 b
lo

ck
s

Figure A.2 – Structure of info block

The above figure shows three levels of nesting info blocks. At the final level – info blocks a and b under
info blocks 1 and 2 –no secondary_fields exist. Info block B also does not contain secondary_fields.

AV/C Descriptor Mechanism Specification Version 1.0 TA Document 1999025, July 23, 2001

Page 140 Copyright  2001, 1394 Trade Association. All rights reserved.

The fields within the AV/C descriptor structures that are used for parsing descriptors and info blocks are
described below.

A.1.1 Size_of fields

Before a controller accesses any descriptor in a unit or subunit, it will need to open the (sub)unit identifier
descriptor, and read its size_of fields. These fields are used for accessing list and entry descriptors and are
not needed for info blocks. The fields are as follows:

— size_of_list_ID: This field determines how many bytes the child_list_ID field has in entry
descriptors that contain them, and the root_list_ID field has in the (sub)unit identifier descriptor.

— size_of_object_ID: This field determines how many bytes the object_ID field has in entry
descriptors that contain them.

— size_of_entry_position: This field is used in commands and is not present in any of the
descriptors.

The size_of fields are constant and are normally defined when the (sub)unit is manufactured.

A.1.2 Descriptor and info block length fields

The first field inside of each (sub)unit identifier descriptor, list descriptor, entry descriptor, and info block
is its length (the length field is always two bytes). This length field refers to the compound length of the
descriptor or info block, which may include any extended (in the case of descriptors) or secondary_fields
(in the case of info blocks). By specifying the length fields, controllers know exactly how much data is in
the descriptor or info block.

A.1.3 Fields-length fields

General descriptor structures and info blocks may contain fields with variable-length data. Preceding these
variable-length fields is a fields-length field specifying their length. After the variable-length field changes
in size, the unit or subunit that owns the descriptor or info block is responsible for updating the preceding
fields-length field. Note that the fields-length field specifies the number of bytes for variable-length fields;
the length value never includes itself in the calculation.

An example of this concept is the manufacturer_dependent_information field in the (sub)unit identifier
descriptor. This field is preceded by the manufacturer_dependent_information_length field, which specifies
the number of bytes used for the manufacturer_dependent_information field that follows.

A.1.4 Bit fields indicating the presence of other fields

Some bit fields may have bits indicating the presence of data in the descriptor or info block. The attributes
fields in list descriptors and entry descriptors provide information on whether an entry descriptor contains
child_list_ID and object_ID fields (see Table 7.2 – List descriptor attribute values on page 39). The bits are
properly termed has_child_ID and has_object_ID.

Though these bits only indicate the presence of these fields, the lengths of these fields are defined in the
(sub)unit identifier descriptor as size_of_list_ID and size_of_object_ID.

A.1.5 Number_of fields

TA Document 1999025, July 23, 2001 AV/C Descriptor Mechanism Specification Version 1.0

 Copyright  2001, 1394 Trade Association. All rights reserved. Page 141

Descriptors and info blocks may contain number_of… fields that help a controller determine the number of
following fields or blocks. The following fields or blocks of data must either have a static known size or, if
the size is not known, must be preceded by a length field. The number_of... fields are only valid for the
descriptor they are found in. In the present AV/C descriptors, these fields are as follows:

— number_of_root_lists: This field exists in the (sub)unit identifier descriptor. A controller can use
this field to prevent over-reading the following root_list_ID fields. The total number of bytes of
root list data is equal to number_of_root_lists * size_of_list_ID.

— number_of_entry_descriptors: This field exists in the list descriptor. A controller can use this
field to prevent from over-reading the list descriptor. The total number of bytes of entries is equal
to the following formula:

Total entry bytes = ∑
=

−
sdescriptorentryofnumber

n

nlengthdescriptorentry

1

)1(__

An info block may contain number_of fields as well. Refer to the specific info block for more information
in references [R1] and [R10].

The location of the number_of fields must be known by a controller to exist based on the specified
architecture.

A.2 Extending descriptors and info blocks

Due to technology advances, new fields may need to be added to descriptors and info blocks. Because info
blocks are structured to be navigable and extensible, it is highly recommended that info blocks are used to
extend all AV/C descriptors and even info blocks themselves.

The AV/C descriptor structure can be extended using info blocks in the following locations:

— Within the (sub)unit identifier descriptor’s extended fields area.

— Within the list or entry descriptor’s extended fields area.

— Within the list or entry descriptor’s specific_information fields.

— Within an info block’s secondary_fields.

The following figure shows the locations in a list descriptor structure where info blocks can be used to
extend it. It also contains information about length fields and how they are associated with extended fields.
Note that since entry descriptors are contained within list descriptors, this structure also serves to show
where info block extensions apply to entry descriptors. Extended fields are shown in gray. The legend is the
same as shown in Figure A.1 – Structure of list descriptor with entries and info blocks on page 138.

AV/C Descriptor Mechanism Specification Version 1.0 TA Document 1999025, July 23, 2001

Page 142 Copyright  2001, 1394 Trade Association. All rights reserved.

list_type

attributes

info block type

info block type

list_descriptor_length

list_specific_information_length

inform ation_fields_length

compound_length

primary_fields_length

entry_descriptor_length

inform ation fields length

compound_length

primary_fields_length

compound_length(s)

compound_length

entry_descriptor_length(s)

entry_descriptor_length

List Descriptor

attributes

entry_type

compound_length(s)

compound_length

list specific
inform ation

info block 1

...

info block n

Entry Descriptor
n

info block 1

...

info block n

...

Entry Descriptor
1

info block type
primary_fields_length

compound_length

info block a

info block type
primary_fields_length

compound_length

info block type

info block a

extended
inform ation compound_length

extended information length

primary_fields_length

inform ation fields

primary_fields

primary_fields

info block a

number_of_entries

child_list_ID
(optional)
entry_ID
(optional)

primary_fields

primary_fields

primary_fields

entry_specific_
inform ation

entry_specific_inform ation_length

inform ation fields

info block type

info block a

extended
inform ation

primary_fields

extended information length

primary_fields_length

compound_length

C

D

B

A

Figure A.3 – Extended structure of the list descriptor and its entries with info blocks

At point
A

in the figure above, nesting an info block within a pre-existing info block extends the
list_specific_information fields.

TA Document 1999025, July 23, 2001 AV/C Descriptor Mechanism Specification Version 1.0

 Copyright  2001, 1394 Trade Association. All rights reserved. Page 143

At point
B

in the figure above, nesting an info block within a pre-existing info block extends the
entry_specific_information fields.

At point
C

 in the figure above, the entry descriptor is extended at the end of its structure using an info
block.

At point
D

 in the figure above, the list descriptor is extended at the end of its structure using an info
block.

Though a controller may read a greater generation_ID in a new unit or subunit (in the (sub)unit identifier
descriptor of the target), this is no guarantee that all general descriptors in the unit or subunit are extended.
If the target’s generation_ID is greater than the controller’s is, then the controller can only assume that
there may be extended descriptors.

A legacy controller can know if a descriptor has been extended by comparing its first two-byte length field
with the computed length of its known fields (using the parsing mechanisms described in clause A.1
“Understanding descriptor and info block” on page 137). If the computed length is less than the first length
field, then the descriptor is extended. The legacy controller shall not assume that an extended descriptor is
an error. Rather, it shall ignore the extended information.

Because extended fields may have variable lengths, the first field in the extended area must be a two-byte
length field.

Information blocks are extended by nesting new information blocks in the information block’s
secondary_fields. Primary fields shall NOT be changed to accommodate new field definitions. Controllers
that understand the info block model should be designed to expect any info block to occur at any time, and
to not treat their appearance as an error.

A.2.1 Extending info block-aware structures

As with all of the AV/C descriptor structures, new info block-aware structures might be defined with
general and specific areas. General areas are usually well defined and usually contain header information
about the descriptor. Specific areas are then designed to appear after the general area, and should be
composed of info blocks.

The overall strategy of placing well-defined fields at the front of a data structure and a variable number of
info blocks at the end of a data structure applies to both the general area as well as the specific area(s).
However, it is important to note that the specific area is generally considered to be part of the well-defined
fields of the general area. As a result, the extra info blocks used to expand a specific area might seem to be
nested “inside” of the well-defined fields of the general area. The following diagram illustrates how an info
block-aware structure can be extended:

AV/C Descriptor Mechanism Specification Version 1.0 TA Document 1999025, July 23, 2001

Page 144 Copyright  2001, 1394 Trade Association. All rights reserved.

well-defined fields of
general area

well-defined fields of
general area

well-defined fields of
“specific area 1”

possible nested info
blocks of “specific area
1”

well-defined fields of
“specific area 2”

possible nested info
blocks of “specific area
2”

possible nested info
blocks of “general
area”

original structure
definition

expanded structure
definition

well-defined fields of
“specific area 1”

possible nested info
blocks of “specific area
1”

newly-defined nested
info blocks of “specific
area 1”

well-defined fields of
“specific area 2”

possible nested info
blocks of “specific area
2”

newly-defined nested
info blocks of “specific
area 2”

possible nested info
blocks of “general
area”

newly-defined nested
info blocks of “general
area”

Figure A.4 – Extending block-aware structures

TA Document 1999025, July 23, 2001 AV/C Descriptor Mechanism Specification Version 1.0

 Copyright  2001, 1394 Trade Association. All rights reserved. Page 145

The diagram shows a hypothetical structure that contains a general area, and two “specific” areas (for
example, subunit-specific and media type-specific areas). Note that the general area is composed of well-
defined fields at the beginning of the entire structure, and info blocks at the end of the entire structure. In
the middle are the specific areas.

Each area has two length fields; the first indicates the overall size of that area (the general area indicates the
total size of the structure), and the second indicates the size of the well-defined fields for that area.

Controllers can use this information to navigate through and/or around the various components of any data
structure. Info blocks also have length information allowing the nesting of blocks within blocks, and still
allowing controllers to safely navigate around those block types that are not understood.

The second part of the diagram shows how each of the areas can be expanded. The well-defined fields are
NOT changed, but new info blocks (either mandatory or optional, depending on the definition) are added in
the info block portion of each area.

Note that because the info block descriptor mechanism is designed to be quite flexible, all controllers
should be prepared to find ANY info blocks in these areas. The diagram shows that new info blocks are
added AFTER the existing info block definitions. Unless there are restrictions on info block placement, it is
acceptable for newly-defined info blocks to appear in any order along with previously-defined info blocks.

Restrictions on info block placement might be imposed by the info block definitions; by unit or subunit
type restrictions; or by media type restrictions. Of course, vendors are free to place info blocks in any order
within the constraints of the technology restrictions.

	Table of Contents
	List of Figures
	List of Tables
	Overview
	Purpose
	Scope

	References
	Reference sources
	Specifications

	Changes from previous version
	Definitions
	Conformance levels
	Glossary of terms
	Acronyms and abbreviations

	Data structure conventions
	Endian-ness
	Command frame figures
	Command-response tables
	Descriptor field qualifiers
	General data structures
	Naming convention in specifications (informative)
	User-modifiable text fields (informative)

	AV/C descriptor and info block mechanism
	Overview
	Descriptors
	Descriptor types

	Information blocks

	Hierarchies using general descriptor types
	Root list descriptor
	Parent and child descriptors
	Multiple parents

	Descriptor identification
	List, entry, and info block type fields
	List ID values
	Assigning list IDs (informative)

	Object_IDs
	Identifying entries by position

	Object and object group representations (informative)

	General descriptor and info block data structures
	Unit identifier descriptor
	Unit identifier descriptor fields

	Subunit identifier descriptor
	Subunit identifier descriptor fields

	List descriptor
	List descriptor fields

	Entry descriptor
	Entry descriptor fields

	Specific information fields in descriptors (informative)
	Information blocks
	Information block structure
	Information block fields

	Expanding information block structures
	Restrictions on information block contents

	Referencing descriptors and info blocks
	Descriptor specifier
	Descriptor_specifiers for descriptors
	(Sub)unit identifier descriptor specifier type
	List descriptor specified by list ID
	List descriptor specified by list_type
	Entry descriptor specified by position in its list
	Entry descriptor specified by object_ID
	Entry descriptor specified by entry_type
	Entry descriptor specified only by object_ID
	Advantages and disadvantages of specifying by object_ID and entry_position (informative)

	Information block reference path
	The info_block_reference_path structure

	Descriptor_specifiers for info blocks
	Info block specified by info block type and instance count
	Info block specified by position in container structure

	Info block reference path examples

	Descriptor and info block commands
	Descriptor commands overview
	Reading and writing AV/C descriptor structures
	Access support
	Access rules
	Access rules for opening descriptors and info blocks
	Access rules for writing descriptors and info blocks
	Access rules for closing descriptors and info blocks
	Summary of the access rules for opening and closing descriptors and info blocks (informative)
	Reset rule
	Time-out rules

	Unit/subunit requirements
	Legacy device behavior

	CREATE DESCRIPTOR command
	CREATE DESCRIPTOR control command
	Field definitions
	CREATE DESCRIPTOR control command responses
	Creating descriptors
	Creating a root list
	Creating a child list from an existing entry
	Creating an entry in a list
	Creating a new entry and its child list

	OPEN DESCRIPTOR command
	OPEN DESCRIPTOR control command
	Field definitions
	OPEN DESCRIPTOR control command responses

	OPEN DESCRIPTOR status command
	Field definitions
	OPEN DESCRIPTOR status command responses

	OPEN DESCRIPTOR notify command
	Field definitions
	OPEN DESCRIPTOR notify command responses

	READ DESCRIPTOR command
	READ DESCRIPTOR control command
	Field definitions
	READ DESCRIPTOR command responses

	Reading the (sub)unit identifier descriptor example
	Reading a list or an entry example

	WRITE DESCRIPTOR command
	WRITE DESCRIPTOR control command
	Field definitions
	Partial replace operations
	Deleting list descriptors
	Deleting leaf lists
	Cascade deleting lists

	WRITE DESCRIPTOR control command responses
	Modifying the (sub)unit identifier descriptor – example
	Modifying list or entry specific information, extended information or Object_ID – example
	Deleting a list descriptor – example
	Deleting an entry descriptor without a child list – example

	WRITE DESCRIPTOR status command
	Field definitions
	WRITE DESCRIPTOR status command responses

	OPEN INFO BLOCK command (not recommended)
	OPEN INFO BLOCK control command
	Field definitions
	OPEN INFO BLOCK control command responses

	OPEN INFO BLOCK status command
	Field definitions
	OPEN INFO BLOCK status command responses

	READ INFO BLOCK command
	READ INFO BLOCK control command
	Field definitions
	READ INFO BLOCK control command responses
	READ INFO BLOCK – examples

	WRITE INFO BLOCK command
	WRITE INFO BLOCK control command
	Field definitions
	Writing to info blocks
	WRITE INFO BLOCK control command responses

	SEARCH DESCRIPTOR command
	SEARCH DESCRIPTOR control command
	Field definitions

	Type_specific_info for the search_in operand
	Supporting data structures
	Entry_descriptor_specifier
	List_descriptor_specifier
	Descriptor_specifier
	Offset_address and length

	Type_specific_info data structures

	Type_specific_info for the start_point operand
	Supporting data structures
	Type_specific_info data structures

	Examples of the SEARCH DESCRIPTOR control command (Informative)
	Example 1: Search for the service_name “NHK” in all DVB service lists (tuner subunit)
	Example 2: Search for the next service entry in the service lists (tuner subunit)
	Example 3: Search for the parent entry of the service list with list ID 200016 (tuner subunit)

	OBJECT NUMBER SELECT command
	OBJECT NUMBER SELECT control command
	Field definitions
	Subfunction implementation rules
	The general ons_selection_specification structure
	The “don’t care” specification
	OBJECT NUMBER SELECT control command responses
	Object selection examples
	Entry selection semantics

	OBJECT NUMBER SELECT status command
	Field definitions
	OBJECT NUMBER SELECT status Responses
	Field definitions

	OBJECT NUMBER SELECT notify command
	Field definitions
	OBJECT NUMBER SELECT: NOTIFY responses

