Document Number 2005001

Industrial & Instrumentation Connector (IEEE 1394-1995 Mating Interface and IEEE 1394b-2002 Amendment)
Revision 1.1

October 1, 2010

Sponsored By:

1394 Trade Association

Accepted for publication by:

1394 Trade Association Board of Directors

Abstract

Keywords

Bus, Industrial, High speed serial bus, Interconnect connectors and cable assembly
1394 Trade Association Specifications are developed within Working Groups of the 1394 Trade Association, a non-profit industry association devoted to the promotion of and growth of the market for IEEE 1394-compliant products. Participants in Working Groups serve voluntarily and without compensation from the Trade Association. Most participants represent member organizations of the 1394 Trade Association. The specifications developed within the working groups represent a consensus of the expertise represented by the participants.

Use of a 1394 Trade Association Specification is wholly voluntary. The existence of a 1394 Trade Association Specification is not meant to imply that there are not other ways to produce, test, measure, purchase, market or provide other goods and services related to the scope of the 1394 Trade Association Specification. Furthermore, the viewpoint expressed at the time a specification is accepted and issued is subject to change brought about through developments in the state of the art and comments received from users of the specification. Users are cautioned to check to determine that they have the latest revision of any 1394 Trade Association Specification.

Comments for revision of 1394 Trade Association Specifications are welcome from any interested party, regardless of membership affiliation with the 1394 Trade Association. Suggestions for changes in documents should be in the form of a proposed change of text, together with appropriate supporting comments. Interpretations: Occasionally, questions may arise about the meaning of specifications in relationship to specific applications. When the need for interpretations is brought to the attention of the 1394 Trade Association, the Association will initiate action to prepare appropriate responses.

Comments on specifications and requests for interpretations should be addressed to:

Editor, 1394 Trade Association
315 Lincoln, Suite E
Mukilteo, WA 98275
USA

1394 Trade Association Specifications are adopted by the 1394 Trade Association without regard to patents which may exist on articles, materials or processes or to other proprietary intellectual property which may exist within a specification. Adoption of a specification by the 1394 Trade Association does not assume any liability to any patent owner or any obligation whatsoever to those parties who rely on the specification documents. Readers of this document are advised to make an independent determination regarding the existence of intellectual property rights, which may be infringed by conformance to this specification.
Contents

IEEE Copyright.. v
Foreword ... vi
Revision history ... vii

1 Scope and Sequence ... 1
 1.1 Scope ... 1
 1.2 Purpose ... 1

2 Normative references .. 2
 2.1 Reference scope ... 2
 2.2 Approved references ... 2
 2.3 Reference acquisition ... 2

3 Definitions and notation ... 3
 3.1 Definitions .. 3
 3.2 Notation .. 3

4 General .. 5

5 Connectors ... 6

6 Performance Group ... 12

Tables

Table 6-1 Performance Group .. 19

Figures

Figure 5 – 1 Industrial Connector Socket .. 6
Figure 5 – 2 Industrial Connector Socket Body Section A-A and Section B-B 7
Figure 5 – 3 Industrial Connector plug body .. 8
Figure 5 – 4 Industrial Connector plug body .. 9
Figure 5 – 5 Industrial Connector plug body .. 10
Figure 5 – 6 Industrial Connector plug and socket mated .. 10
Figure 5 – 7 Industrial Connector PC Board footprint (Informative) 11

Annexes

Figure 5 – 1 Industrial Connector Socket .. 6
Figure 5 – 2 Industrial Connector Socket Body Section A-A and Section B-B ..7
Figure 5 – 3 Industrial Connector plug body ..8
Figure 5 – 4 Industrial Connector plug body ..9
Figure 5 – 5 Industrial Connector plug body ...10
Figure 5 – 6 Industrial Connector plug and socket mated...10
Figure 5 – 7 Industrial Connector PC Board footprint (Informative) ..11
IEEE Copyright

Portions of this specification are copied from published IEEE standards, by permission.

The source documents are:

The IEEE copyright policy at http://standards.ieee.org/IPR/copyrightpolicy.html states, in part:

Royalty Free Permission

IEEE-SA policy holds that anyone may excerpt and publish up to, but not more than, ten percent (10\%) of the entirety of an IEEE-SA Document (excluding IEEE SIN books) on a royalty-free basis, so long as:

1) Proper acknowledgment is provided;

2) the ‘heart’ of the standard is not entirely contained within the portion being excerpted.

This included the use of tables, graphs, abstracts and scope statements from IEEE Documents
Foreword (This foreword is not part of 1394 Trade Association Specification 2005001)

This specification defines an Industrial and Instrumentation connector for applications where the functionality described in IEEE Std 1394-1995 is required with added mechanical enhancements for harsher environments.

There is one annex, Annex A, in this specification, which is normative and part of this specification.

This specification was accepted by the Board of Directors of the 1394 Trade Association. Board of Director’s acceptance of this specification does not necessarily imply that all board members voted for acceptance. At the time it accepted this specification, the 1394 Trade Association. Board of Directors had the following members:

Max Bassler, Chair
Richard Mourn, Vice-Chair
Dave Thompson, Secretary

Organizational Name of Representative
LSI ... Dave Thompson
Littelfuse .. Max Bassler
Astek .. Richard Mourn
PLX Tech .. Don Harwood
Texas Instruments................................. Toni Ray
Hella Aglaia.. Rainer Gutzmer
TC Applied Technologies............................... Morten Lave
Codemost ... Dimitrios Staikos

The Cable & Connector Working Group, which developed and reviewed this specification, had the following members:

Max Bassler, Chair

1394 TA 2005001 Revision 1.1
Revision history

Revision 1.0 (June 26, 2006) Initial release.

Revision 1.1 (June 1, 2010) Additional latching drawings in Annex A (1394b)
Industrial & Instrumentation Connector (IEEE 1394-1995 Mating Interface and IEEE 1394b-2002 Amendment)

1 Scope and Sequence

1.1 Scope

This specification describes an Industrial and Instrumentation connector for applications where the functionality described in IEEE Std 1394-1995 is required with added mechanical enhancements for harsher environments.

An industrial connector does not have the same design criteria as an external box to box application. The physical interconnection of the plug to the socket requires an external shroud to provide support and guidance to the internal IEEE Std 1394-1995 core connector. Industrial devices are optimized for strength and durability in a factory or test environment. The Industrial Connectors require increased latching of the mated pairs and enhanced strain relief around the terminated cable. These features will improve the mechanical reliability of the interconnection system.

1.2 Purpose

Although there is a need for improved mechanical performance, the electrical signal integrity identified with IEEE Std 1394-1995 needs to be satisfied. All of the performance parameters identified in both IEEE Std 1394-1995 and the amendment IEEE Std 1394a-2000 will be met with the new interconnection system.

Annex A will update this industrial latching interconnect specification to include the 9 pin connectors and cables found in IEEE 1394-2008 for higher performance devices up to $1600.$
2 Normative references

2.1 Reference scope
The specifications and standards named in this section contain provisions, which, through reference in this text, constitute provisions of this 1394 Trade Association Specification. At the time of publication, the editions indicated were valid. All specifications and standards are subject to revision; parties to agreements based on this 1394 Trade Association Specification are encouraged to investigate the possibility of applying the most recent editions of the specifications and standards indicated below.

2.2 Approved references
The following approved specifications and standards may be obtained from the organizations that control them.

- IEEE Std 1394a-2000, Standard for a High Performance Serial Bus—Amendment 1

2.3 Reference acquisition
The references cited may be obtained from the organizations that control them:

- 1394 Trade Association, 315 Lincoln, Suite E, Mukilteo, WA 98275 USA; (425) 514-8454 / (425) 710-9971 (FAX); http://www.1394ta.org/
- American National Standards Institute (ANSI), 11 West 42nd Street, New York, NY 10036, USA; (212) 642-4900 / (212) 398-0023 (FAX); http://www.ansi.org/
- Institute of Electrical and Electronic Engineers (IEEE), 445 Hoes Lane, PO Box 1331, Piscataway, NJ 08855-1331, USA; (732) 981-0060 / (732) 981-1721 (FAX); http://www.ieee.org/

In addition, many of the documents controlled by the above organizations may also be ordered through a third party:

- Global Engineering Documents, 15 Inverness Way, Englewood, CO 80112-5776; (800) 624-3974 / (303) 792-2192; http://www.global.ihs.com/
3 Definitions and notation

3.1 Definitions

3.1.1 Conformance

Several keywords are used to differentiate levels of requirements and optionally, as follows:

3.1.1.1 expected: A keyword used to describe the behavior of the hardware or software in the design models assumed by this specification. Other hardware and software design models may also be implemented.

3.1.1.2 ignored: A keyword that describes bits, bytes, quadlets, octlets or fields whose values are not checked by the recipient.

3.1.1.3 may: A keyword that indicates flexibility of choice with no implied preference.

3.1.1.4 reserved: A keyword used to describe objects (bits, bytes, quadlets, octlets and fields) or the code values assigned to these objects in cases where either the object or the code value is set aside for future standardization. Usage and interpretation may be specified by future extensions to this or other specifications. A reserved object shall be zeroed or, upon development of a future specification, set to a value specified by such a specification. The recipient of a reserved object shall ignore its value. The recipient of an object defined by this specification as other than reserved shall inspect its value and reject reserved code values.

3.1.1.5 shall: A keyword that indicates a mandatory requirement. Designers are required to implement all such mandatory requirements to assure interoperability with other products conforming to this specification.

3.1.1.6 should: A keyword that denotes flexibility of choice with a strongly preferred alternative. Equivalent to the phrase “is recommended.”

3.1.2 Glossary

The following terms are used in this specification:

3.1.2.1 Industrial Connector: an interconnection scheme that will require a greater level of mechanical retention than is currently provided by the IEEE Std 1394-1995 connector system.

3.1.3 Abbreviations

The following are abbreviations that are used in this specification:

IIC-1394-1995 Industrial and Instrumentation Connector with IEEE Std 1394-1995 Interface

3.2 Notation

3.2.1 Numeric values

Decimal and hexadecimal are used within this specification. By editorial convention, decimal numbers are most frequently used to represent quantities or counts. Addresses are uniformly represented by hexadecimal numbers. Hexadecimal numbers are also used when the value represented has an underlying structure that is more apparent in a hexadecimal format than in a decimal format.

Decimal numbers are represented by Arabic numerals without subscripts or by their English names. Hexadecimal numbers are represented by digits from the character set 0 – 9 and A – F followed by the subscript 16. When the
subscript is unnecessary to disambiguate the base of the number it may be omitted. For the sake of legibility hexadecimal numbers are separated into groups of four digits separated by spaces. As an example, 42 and 2A\textsubscript{16} both represent the same numeric value.
4 General

All dimensions, tolerances and descriptions of features that affect the intermateability of the standardized shielded connector plugs and sockets are specified within IEEE Std 1394-1995.

All cables and cable assemblies shall meet assembly criteria, test performance groups A to G and signal propagation performance found in IEEE Std 1394-1995 and IEEE Std 1394a-2000. The signal propagation test procedures described in IEEE Std 1394-1995 Annex K along with additions from the electrical test of IEEE Std 1394a-2000 shall be used in the evaluation.

Connector features that are not directly controlled within this clause shall be indirectly controlled by performance requirements in IEEE Std 1394-1995 and clause 3.

In addition, all additional tests required for 1394b connectors covered by IEEE 1394-2008 will be required for ANNEX A “The Latching 1394b interface”. Dimensional exceptions are found in Annex A for the overmold and PCB socket spacing.
5 Connectors

This clause specifies all dimensions, tolerances and descriptions of features that affect the intermatability of the industrial latching plugs and sockets. The features of the industrial plugs and sockets that do not affect intermatability are not specified and may vary at the option of the manufacturer.

Figure 5 – 1 Industrial Connector Socket
NOTES—

1. See IEEE Std 1394-1995 Figure 4-4 Socket Shell Datum definitions
2. Dimensions in mm
3. Unless otherwise specified, tolerances: linear ± 0.10 and angular ± 2°
4. Interpret all dimensions and tolerances per ANSI-Y-14.5M-1994
5. Material composition is the option of the manufacturer

Figure 5 – 2 Industrial Connector Socket Body Section A-A and Section B-B
NOTES——

2. Leaf Spring is optional
3. Locking latch
4. Inner shell on the plug shall be isolated from outer shell and shall float mechanically and electrically
5. Dimensions in mm
6. Unless otherwise specified, tolerances: linear ± 0.10 and angular ± 2°
7. Interpret all dimensions and tolerances per ANSI-Y-14.5M-1994
8. Material composition is the option of the manufacturer

Figure 5 – 3 Industrial Connector plug body
NOTES—
2. Dimensions in mm
3. Unless otherwise specified, tolerances: linear ± 0.10 and angular ±2°
4. Interpret all dimensions and tolerances per ANSI-Y-14.5M-1994

Figure 5 – 4 Industrial Connector plug body
NOTES—
1. See IEEE Std 1394-1995 Figure 4-2 Plug Body Datum definitions
2. Dimensions in mm
3. Unless otherwise specified, tolerances: linear ± 0.10 and angular ± 2°
4. Interpret all dimensions and tolerances per ANSI-Y-14.5M-1994

Figure 5 – 5 Industrial Connector plug body

NOTES—
1. Dimensions in mm
2. Unless otherwise specified, tolerances: linear ± 0.10 and angular ± 2°
3. Interpret all dimensions and tolerances per ANSI-Y-14.5M-1994

Figure 5 – 6 Industrial Connector plug and socket mated
NOTES—

1. Dimensions in mm
2. Unless otherwise specified, tolerances: linear ± 0.10 and angular ± 2°
3. Interpret all dimensions and tolerances per ANSI-Y-14.5M-1994
4. Datum -S- Bottom of the printed circuit board
5. Phantom of the socket body with a minimum socket mounting interval of 30 mm

Figure 5 – 7 Industrial Connector PC Board footprint (Informative)
6 Performance Group

<table>
<thead>
<tr>
<th>Phase</th>
<th>Test</th>
<th>Measurements to be performed</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Crimp strength</td>
<td>Apply load at a rate of 25 mm/min</td>
<td>147 N Minimum</td>
</tr>
<tr>
<td>A2</td>
<td>Plug to socket latch strength</td>
<td>Apply 196 N load for one minute on plug housing</td>
<td>No discontinuity of contacts or shield greater than 1 µs</td>
</tr>
</tbody>
</table>

Table 6–1 Performance Group A
Annex A (normative)

1394b Latching Interconnect System

The 1394b Industrial Latching interface uses the standard IEEE 1394-2008 socket and a modified overmolded 1394b Beta plug to include threaded thumbscrews that will attach directly to the device panel or threaded standoffs on the device panel. The dimensions needed to manufacture the latching cable plug and minimum spacing on the PCB of the sockets are given as the reference. These definitions should ensure intermateability and interoperability. All other dimensions are found in the standard IEEE 1394-2008.

This annex specifies all dimensions, tolerances and descriptions of features that affect the intermateability of the 1394b industrial latching plugs and sockets. The features of the 1394b industrial plugs and sockets that do not affect intermateability are not specified and may vary at the option of the manufacturer.

A.1 Annex figures

Annex Figure - 1 Overmodled Cable Plug Detail and Pinout

Note: 1- Cable length shown as reference only

A.2 Annex figures

Annex Figure - 2 Reference Latching Cable Plug- Side View
A.3 The figure A-3 PCB Socket Spacing

Annex Figure -3 Reference PCB Socket Panel

Note: 1- The standard 1394b Beta socket is to be used with this dimensional layout
Bibliography

ISO/I