1394 Connector and Cable Compliant Testing Criteria

Revision 1.0

November 19, 2009

Sponsored by:
1394 Trade Association

Accepted for publication by
1394 Trade Association Board of Directors

Abstract
This specification defines the requirements for 1394 cable and connector compliance test program

Keywords
IEEE 1394, serial bus, compliance, finish, material, electroplating, 6 ckt, 4 ckt, 9 ckt, testing, performance
1394 Trade Association Specifications are developed within Working Groups of the 1394 Trade Association, a non-profit industry association devoted to the promotion of and growth of the market for IEEE 1394-compliant products. Participants in Working Groups serve voluntarily and without compensation from the Trade Association. Most participants represent member organizations of the 1394 Trade Association. The specifications developed within the working groups represent a consensus of the expertise represented by the participants.

Use of a 1394 Trade Association Specification is wholly voluntary. The existence of a 1394 Trade Association Specification is not meant to imply that there are not other ways to produce, test, measure, purchase, market or provide other goods and services related to the scope of the 1394 Trade Association Specification. Furthermore, the viewpoint expressed at the time a specification is accepted and issued is subject to change brought about through developments in the state of the art and comments received from users of the specification. Users are cautioned to check to determine that they have the latest revision of any 1394 Trade Association Specification.

Comments for revision of 1394 Trade Association Specifications are welcome from any interested party, regardless of membership affiliation with the 1394 Trade Association. Suggestions for changes in documents should be in the form of a proposed change of text, together with appropriate supporting comments.

Interpretations: Occasionally, questions may arise about the meaning of specifications in relationship to specific applications. When the need for interpretations is brought to the attention of the 1394 Trade Association, the Association will initiate action to prepare appropriate responses.

Comments on specifications and requests for interpretations should be addressed to:

Editor, 1394 Trade Association
315 Lincoln, Suite E
Mukilteo, WA 98275
USA

Published by
1394 Trade Association
315 Lincoln, Suite E
Mukilteo, WA 98275 USA

Copyright © 2009 by 1394 Trade Association
All rights reserved. Printed in the United States of America
Table of Contents

1 Overview ...1
 1.1 Purpose ...1
 1.2 Scope ...1
2 Normative references ...2
 2.1 Reference scope ... 2
 2.2 Approved references .. 2
 2.3 Reference acquisition ... 2
3 Definitions .. 3
 3.1 Conformance Levels .. 3
 3.2 Glossary of Terms ... 3
 3.3 Acronyms and Abbreviations ... 3
4 Certification .. 5
 4.1 Qualification ... 5
 4.2 Registration .. 5
 4.3 Maintenance and Documentation .. 5
 4.4 Enforcement .. 5
5 Verification Procedure .. 7
 5.1 Test Laboratory ... 7
 5.2 Test Samples ... 7
 5.3 Sample Distribution ... 8
 5.4 Test Printed Circuit Boards ... 9
 5.5 Standard Atmospheric Conditions ... Error! Bookmark not defined.
 5.6 Test Sequences .. 10
 5.7 Visual Examination ... 24
 5.8 Data Measurements .. 24
 5.9 Failure Analysis ... 24
 5.11 Test Sample Disposition ... 25

List of Tables

Table 1 – Sample Distribution Intermating ... 8
Table 2 – Sample Distribution Cross Mating ... 8
Table 3 – Sample Distribution Cable Construction and Assembly Techniques................. 9
Table 4 - Test Boards by Performance Group ... 9
Table 5 - Performance Group A .. 10
Table 6 – Performance Group B ... 11
Table 7 – Performance Group C .. 12
Table 8 – Performance Group D ... 14
Table 9 – Performance Group E .. 16
Table 10 – Performance Group F .. 18
Table 11 – Performance Group G .. 19
Table 12 – Performance Group H .. 20
Table 13 – Performance Group I ... 23
IEEE Copyright

Portions of this specification are copied from published IEEE standards, by permission.

The source documents is:

IEEE Std 1394-2008, High Performance Serial Bus

The IEEE copyright policy at http://standards.ieee.org/IPR/copyrightpolicy.html states, in part:

Royalty Free Permission

IEEE-SA policy holds that anyone may excerpt and publish up to, but not more than, ten percent (10%) of the entirety of an IEEE-SA Document (excluding IEEE SIN books) on a royalty-free basis, so long as:

1) Proper acknowledgment is provided;

2) The ‘heart’ of the standard is not entirely contained within the portion being excerpted.

This included the use of tables, graphs, abstracts and scope statements from IEEE Documents
Foreword

This specification defines the requirements for 1394 copper cable and connector compliance test programs found in IEEE 1394-2008 (known as short haul interconnects that are 4.5 meters maximum length). This document with its new additions will supersede TS 2004003 for the 4 and 6 ckt products.

There are three annexes in this specification. Annex A, B and C are normative and part of this specification.

This specification has not been accepted by the Board of Directors of the 1394 Trade Association. Board of Directors acceptance of this specification does not necessarily imply that all board members voted for acceptance. At the time it accepted this specification, the 1394 Trade Association Board of Directors had the following members:

Max Bassler, Chair
Peter Helfet, Vice-Chair
Dave Thompson, Secretary

Organization Represented Name of Representative
Littlefuse Inc. .. Max Bassler
Eqcologic ... Peter Helfet
PLX Technology .. Don Harwood
LSI .. Dave Thompson
Texas Instruments ... Tony Ray
Hella Aglaia .. Rainer Gutzmer
TC Applied Technologies .. Morten Lave
Quantum Parametrics .. Richard Mourn

The Cables and Connectors Working Group, which developed and reviewed this specification, had the following members:

Max Bassler, Chair CCWG Rod Barman
Peter Helfelt, Vice Chair Max Bassler
David Thompson, Secretary Les Baxter
 Bob Fust
 Peter Helfet
 Jim Koser
 Mike Gardner
 Tom Gouldy
 Rainer Gutzmer
 Don Harwood
 Yuuki Hayato
 S. Kawanishi
 Morten Lave
 Sam Liu
 Sophia Li
 David McCubbrey
 Richard Mourn
 Toni Ray
 Gregor Reiner
 Eileen Robarge
 Michael Rucks
 Hideaki Sato
 Naoshi Serizawa
 James Snider
 David Thompson
 Stanley Tsai
 Hans van der Ven
 Daniel Whelan
 Michael Wolitzer
 Gary Yurko
 Koen Van den Brande
- This page left intentionally blank -
1 Overview

1.1 Purpose

The goal is to evaluate cable and connector products against the established test criteria for the IEEE 1394 Standards. The verification of dimensional, intermateability and performance characteristics of connectors and cable assemblies manufactured according to the 1394 standards will enable market acceptance.

1.2 Scope

This document establishes the performance requirements for all short haul copper connectors and cable assemblies up to 4.5 meters long with plugs at both ends manufactured according to IEEE Std 1394-2008. Administrative, regulations, performance validation sequences and procedures and pertinent technical information are included. The new work found in this specification is for the 1394b (Beta & Bilingual) short haul connector and cables assemblies up to 4.5 meters long with plugs at both ends and it incorporates all of the compliance criteria found in the TS2004003 for 4 and 6 circuit short haul connectors and cables (Alpha). The reference to "short haul cables" has been commonly defined as 4.5 meters maximum length in the past.

Cable assemblies with plugs at each end greater than 4.5 m long are not covered by this Standard. Longer cable lengths may be possible if special considerations are given to the actual serial bus topology and meeting signal propagation criteria in IEEE Std 1394-2008.

Reference for longer length cable guidance:
Reference: 4.2.2.2 Cable Assemblies (6 Circuit) IEEE Std 1394-2008 Page 37.
Reference: 4.3.2.2 Cable Assemblies (4 Circuit) IEEE Std 1394-2008 Page 56.
Reference: 4.4.3.2 Cable Assemblies (9 Circuit) IEEE Std 1394-2008 Page 84.

This new document shall not be a cause for re-certification if you have passed the requirements of TS 2004003.
2 Normative references

2.1 Reference scope

The specifications and standards named in this section contain provisions, which, through reference in this text, constitute provisions of this 1394 Trade Association Specification. At the time of publication, the editions indicated were valid. All specifications and standards are subject to revision; parties to agreements based on this 1394 Trade Association Specification are encouraged to investigate the possibility of applying the most recent editions of the specifications and standards indicated below.

2.2 Approved references

The following approved specifications and standards may be obtained from the organizations that control them.

IEEE Std 1394-2008, High Performance Serial Bus

Throughout this document, the term “IEEE 1394” shall be understood to refer to IEEE Std. 1394-2008.

2.3 Reference acquisition

The references cited may be obtained from the organizations that control them:

American National Standards Institute (ANSI), 25 West 43rd Street, 4 floor, New York, NY 10036, USA; (212) 642-4900 / (212) 398-0023 (FAX); http://www.ansi.org/

Institute of Electrical and Electronic Engineers (IEEE), 445 Hoes Lane, PO Box 1331, Piscataway, NJ 08855-1331, USA; (732) 981-0060 / (732) 981-1721 (FAX); http://www.ieee.org/

Electronic Components Association (ECA), 2500 Wilson Boulevard, Arlington, VA 22201, USA; Phone: (703) 907-8024 / (703) 875-8908; (http://www.ecentral.org/)

Electronic Industries Alliance (EIA) Organized under ECA Association (http://www.eia.org/)

International Electrotechnical Commission (IEC), IEC Central Office, 3, rue de Varembé, P.O. Box 131 CH – 1211, GENEVA 20 Switzerland; Phone: +41 22 919 02 11 / +41 22 919 03 00 (FAX); (http://www.iec.ch/)
3 Definitions

3.1 Conformance Levels

3.1.1 expected: A key word used to describe the behavior of the hardware models assumed by this Specification. Other hardware models may also be implemented.

3.1.2 ignored: A keyword that describes bits, bytes, quadlets, octlets or fields whose values are not checked by the recipient.

3.1.3 may: A key word that indicates flexibility of choice with no implied preference.

3.1.4 reserved: A keyword used to describe objects (bits, bytes, quadlets, octlets and fields) or the code values assigned to these objects in cases where either the object or the code value is set aside for future standardization. Usage and interpretation may be specified by future extensions to this or other specifications. A reserved object shall be zeroed or, upon development of a future specification, set to a value specified by such a specification. The recipient of a reserved object shall ignore its value. The recipient of an object defined by this specification as other than reserved shall inspect its value and reject reserved code values.

3.1.5 shall: A key word indicating a mandatory requirement. Designers are required to implement all such mandatory requirements.

3.1.6 should: A key word indicating flexibility of choice with a strongly preferred alternative. Equivalent to the phrase is recommended.

3.2 Glossary of Terms

The terms used in this document are generally accepted by the electrical and electronics industries and commonly used in electrical connector engineering practice.

3.3 Acronyms and Abbreviations

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AWG</td>
<td>American Wire Gauge</td>
</tr>
<tr>
<td>ckt</td>
<td>Circuit</td>
</tr>
<tr>
<td>DC</td>
<td>Direct Current</td>
</tr>
<tr>
<td>min</td>
<td>minimum</td>
</tr>
<tr>
<td>max</td>
<td>maximum</td>
</tr>
<tr>
<td>PCB</td>
<td>Printed Circuit Board</td>
</tr>
</tbody>
</table>
4 Certification

4.1 Qualification
Test samples of connectors and cable assemblies must meet all of the requirements specified in the test groups to be successfully qualified. Only the Compliance Logo Program Administrator of the 1394 Trade Association may grant a deviation from the performance specifications in this document and IEEE Std 1394-2008.

4.2 Registration
The 1394 Trade Association shall provide written notification to a manufacturer that a connector or a cable assembly is in conformance with the requirements of this specification upon presentation to the 1394 Trade Association of test documentation for that product which fully satisfies all the requirements of this document. The 1394 Trade Association will also publish on its web site a list of manufacturers and products for which such documentation has been presented. Manufacturers with products on this list may use the 1394 Compliance Logo with the listed product, subject to Compliance Logo Usage terms provided by the 1394 Trade Association.

4.3 Maintenance and Documentation
When a manufacturer is using the 1394 Compliance Logo for a product according to section 4.2, the manufacturer shall make no design changes, component substitutions, material or process changes that affect full compliance with this document, unless such changes are fully qualified as per section 4.1, and the results are presented to the 1394 Trade Association. Products using the Compliance Logo according to section 4.2 shall be tested every 18 months to confirm full compliance as per section 4.1. A new product derived from a previous product that has passed testing as per section 4.1 may be registered according to section 4.2 by providing additional testing data fully covering the performance of those portions of the new product which differ from the previous product, or which are affected by such differences, if the previous product has satisfied section 4.1 within the previous 18 months.

4.4 Enforcement
When presented with adequate evidence of a product that fails to comply as per section 4.1, the 1394 Trade Association shall notify the product's manufacturer in writing of their failure to comply. If the manufacturer does not correct the failure, and the product was previously registered as per section 4.2, the product will be removed from the web site list of compliant products, and the manufacturer will lose the right to use the 1394 Compliance Logo with that product.
5 Verification Procedure

5.1 Test Laboratory

It is the responsibility of the test laboratory to demonstrate its ability to carry out the testing activities to meet the requirements of the 1394 Trade Association. The laboratory must be certified by the 1394 Trade Association according to the requirements for the current 1394 Compliance Logo Program.

The laboratory shall:

Ensure the competency of all people who operated specific equipment, perform tests, and sign test reports

Monitor, control and record environmental conditions as required by this specification so as not to influence the quality of the test results

Use equipment that is calibrated prior to being put into service and maintained according to an appropriate schedule using a qualified calibration service and traceable standards

4) Test with equipment that is capable of achieving the accuracy required and shall comply with the specifications established in the test methods

The primary test laboratory may subcontract work to other competent supplier(s) in the event of unforeseen circumstances, workloads or activities that require extra technical expertise. The primary laboratory shall advise and obtain in writing approval of the 1394 Trade Association prior to subcontracting and work. The primary test laboratory shall ensure and be able to demonstrate that its subcontractor is competent to perform the activities assigned.

5.2 Test Samples

The test samples shall be representative of the manufacturer’s normal production and shall be selected by the manufacturer at random. Each test sample or part shall be individually identified with a permanent marking that will not be destroyed throughout the test. All submitting manufacturers need to provide the following information:

1) Technical Contact (Name, Phone Number and Electronic Mail address)
2) PC board sockets, cable plug kits and cable assemblies manufacturer and part numbers
3) Cable manufacturer and part number, conductor size and type (AWG and number of strands and insulation material) and outer and signal shield construction
4) Cable assembly termination technique, tooling and process information
5) Additional special preparation performed
5.3 Sample Distribution

Samples shall be separated into groups according to the applicable sequence and tested according to the conditions indicated.

5.3.1 Socket, Plug and Cable

The number of samples required by each performance group regardless of circuit size is:

<table>
<thead>
<tr>
<th>Performance Group</th>
<th>Number of Samples Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sockets, unassembled to the Printed Circuit Boards</td>
<td>3 0 0 5 0 0 0 0 0 8</td>
</tr>
<tr>
<td>Sockets, assembled to Printed Circuit Boards</td>
<td>0 5 5 0 10 5 5 3 3 36</td>
</tr>
<tr>
<td>Plugs, unassembled to cable</td>
<td>3 0 0 0 0 0 0 0 0 3</td>
</tr>
<tr>
<td>Cable assembly with one plug at one end 25.4 cm long</td>
<td>3 5 5 0 10 5 3 0 31</td>
</tr>
<tr>
<td>Cable assembly with one plug at one end 2 m long</td>
<td>0 0 0 5 0 5 0 10 0 20</td>
</tr>
<tr>
<td>Cable assembly with plugs at each end 4.5 m long</td>
<td>0 0 0 0 0 0 0 3 3</td>
</tr>
</tbody>
</table>

Table 1 – Sample Distribution Intermateing

5.3.2 Connector Cross Mating - Sockets and Plugs

All socket and plug samples submitted will be evaluated to verify intermateability while maintaining conformance to the established performance requirements.

The 1394 Trade Association, based on the number of participants included in the test program, will determine the total number of samples.

The number of additional samples required by each performance group regardless of circuit size is:

<table>
<thead>
<tr>
<th>Performance Group</th>
<th>Number of Samples Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sockets, unassembled to the Printed Circuit Boards</td>
<td>0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>Sockets, assembled to Printed Circuit Boards</td>
<td>0 2 2 0 5 2 2 0 0 13</td>
</tr>
<tr>
<td>Plugs, unassembled to cable</td>
<td>0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>Cable assembly with one plug at one end 25.4 cm long</td>
<td>0 2 2 0 5 2 0 0 11</td>
</tr>
<tr>
<td>Cable assembly with one plug at one end 2 m long</td>
<td>0 0 0 0 2 0 0 0 2</td>
</tr>
<tr>
<td>Cable assembly with plugs at each end 4.5 m long</td>
<td>0 0 0 0 0 0 0 0 0</td>
</tr>
</tbody>
</table>

Table 2 – Sample Distribution Cross Mating
5.3.3 Alternate Cable Construction and Assembly Techniques

Additional socket and plug samples are required to evaluate alternate cable construction, plug termination methods and cable assembly part numbers.

The 1394 Trade Association, based on the number of participants included in the test program, will determine the total number of samples.

The number of samples required by each performance group regardless of circuit size is:

<table>
<thead>
<tr>
<th>Performance Group</th>
<th>Number of Samples Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sockets, unassembled to the Printed Circuit Boards</td>
<td>3 0 0 0 0 0 0 0 3</td>
</tr>
<tr>
<td>Sockets, assembled to Printed Circuit Boards</td>
<td>0 0 0 0 0 0 0 3 3</td>
</tr>
<tr>
<td>Plugs, unassembled to cable</td>
<td>3 0 0 0 0 0 0 0 3</td>
</tr>
<tr>
<td>Cable assembly with one plug at one end 25.4 cm long</td>
<td>3 0 0 0 0 0 0 0 3</td>
</tr>
<tr>
<td>Cable assembly with one plug at one end 2 m long</td>
<td>0 0 0 0 0 0 0 8 8</td>
</tr>
<tr>
<td>Cable assembly with plugs at each end 4.5 m long</td>
<td>0 0 0 0 0 0 0 3 3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Performance Group</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Test Boards</td>
<td>N/R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>N/R</td>
<td>N/R</td>
<td>N/R</td>
<td></td>
</tr>
<tr>
<td>High Speed Test Boards</td>
<td>N/R</td>
<td>N/R</td>
<td>N/R</td>
<td>N/R</td>
<td>N/R</td>
<td>N/R</td>
<td>N/R</td>
<td>R</td>
<td></td>
</tr>
</tbody>
</table>

(R=Required and N/R=Not Required)

Table 3 – Sample Distribution Cable Construction and Assembly Techniques

5.4 Test Printed Circuit Boards

5.4.1 DC Test Boards

Printed circuit boards for DC testing shall be double sided 1.59-mm thick, glass epoxy FR-4 material. Traces shall be properly sized to minimize possible current heating effects. These boards should be built in accordance with the PCB footprint information found in IEEE 1394-2008 standard.

5.4.2 High-speed Test Boards

Printed circuit boards for high-speed testing shall be controlled impedance with isolated signals and appropriate calibration traces for removing fixture effects. Test laboratories or members shall contact the 1394 Trade Association to obtain the availability and cost of the PC board for use in high speed testing.
5.5 Standard Atmospheric Conditions

Unless otherwise specified, all measurements shall be made within the following ambient conditions:

1) Temperature: 18°C to 28°C.
2) Atmospheric pressure: 650 to 800 millimeters of mercury.
3) Relative humidity: 20% to 80%.
4) Special tests may require tighter control of conditions and are specified in the test procedure.

5.6 Test Sequences

5.6.1 Performance Group A: Basic construction, workmanship, dimensions & plating thickness.

<table>
<thead>
<tr>
<th>Phase</th>
<th>Test</th>
<th>Measurements to be performed</th>
<th>Requirements Performance Level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Title</td>
<td>ID No.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Severity or conditions</td>
<td>Title</td>
</tr>
<tr>
<td>A1</td>
<td>Visual and dimensional inspection</td>
<td>ANSI/EIA 364-18B-07</td>
<td>Unmated connectors</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>Plating Thickness</td>
<td>Plating Thickness</td>
<td>6 ckt</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5 - Performance Group A

Notes:

1) This table was created by using the first two test parameter (A1, A2) in Tables 4-3 (6 ckt), 4-12 (4 ckt) and 4-26 (9 ckt) of IEEE Std 1394-2008.

2) All ANSI/EIA test ID numbers referenced were updated to the most recent ID numbers.

Acknowledgement for compliance to IEEE royalty-free permission policy: “From IEEE Std 2008 Copyright 2008. All rights reserved.”
5.6.2 Performance Group B: DC electrical functionality when subjected to mechanical shock and vibration

<table>
<thead>
<tr>
<th>Phase</th>
<th>Test</th>
<th>Severity or conditions</th>
<th>Measurements to be performed</th>
<th>Requirements Performance Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>Mating and unmating forces</td>
<td>Mount socket rigidly. Insert plug by hand. (Mate Only)</td>
<td>Low Level Contact Resistance</td>
<td>ANSI/EIA 364-23C-06 6 ckt 30 mΩ maximum initial per mated contact 4 ckt and 9 ckt 50 mΩ maximum initial per mated contact</td>
</tr>
<tr>
<td>B2</td>
<td>Vibration</td>
<td>6 ckt Condition III See Note A</td>
<td>Continuity</td>
<td>ANSI/EIA 364-46B-06 No discontinuity at 1 μs or longer. (Each contact)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 ckt Condition II See Note A</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9 ckt Condition I See Note A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B3</td>
<td>None</td>
<td>Low Level Contact Resistance</td>
<td>ANSI/EIA 364-23C-06</td>
<td>30 mΩ maximum change from initial per mated contact</td>
</tr>
<tr>
<td>B4</td>
<td>Mechanical Shock (Specified Pulse)</td>
<td>6 ckt and 4 ckt Condition G See Note A</td>
<td>Continuity</td>
<td>ANSI/EIA 364-46B-06 No discontinuity at 1 μs or longer. (Each contact) See Note A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9 ckt Condition A or E See Note A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B5</td>
<td>None</td>
<td>Low Level Contact Resistance</td>
<td>ANSI/EIA 364-23C-06</td>
<td>30 mΩ maximum change from initial per mated contact</td>
</tr>
</tbody>
</table>

Note A - Connectors are to be mounted on fixture to simulate typical usage. The socket shall be mounted to a panel, which is permanently attached to the fixture. For details including how the board is attached to the fixture e.g. bolt pattern, check the related ANSI/EIA specifications. The mounting means shall include accessories such as:

1) An insulating member to prevent grounding of the shell to the panel

2) A printed circuit board in accordance with the pattern shown in IEEE Std 1394-2008 Annex B or Annex D (6 ckt) or Paragraph 4.3.1.8 and Figures 4-17 and 4-18 (4 ckt) or Paragraph 4.4.1.7 and Figures 4-41 and 4-42 (9 ckt) for the socket being tested. The printed circuit board shall be permanently affixed to the fixture.

3) The plug shall be mated with the socket and the other end of the cable shall be permanently clamped to the fixture as shown in IEEE Std 1394-2008 Figure 4-9.

4) Shield and contact resistance measurement location as shown in IEEE Std 1394-2008 Figure 4-10 or 4-22.

Table 6 – Performance Group B

Notes:
1) This table was created using the test parameters (A3 to A7) in Tables 4-3 (6 ckt), 4-12 (4 ckt) and 4-26 (9 ckt) of IEEE Std 1394-2008.

2) All ANSI/EIA test ID numbers referenced were updated to the most recent ID numbers.

Acknowledgement for compliance to IEEE royalty-free permission policy: “From IEEE Std 2008 Copyright 2008. All rights reserved.”

5.6.3 Performance Group C: DC electrical functionality when subjected to thermal shock and humidity stress

<table>
<thead>
<tr>
<th>Phase</th>
<th>Test</th>
<th>Measurements to be performed</th>
<th>Requirements Performance Level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Title ID No.</td>
<td>Severity or conditions</td>
</tr>
<tr>
<td>C1</td>
<td>Mating and unmating forces</td>
<td>ANSI/EIA 364-13D-07</td>
<td>Mount socket rigidly. Insert plug by hand.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>Thermal Shock</td>
<td>ANSI/EIA 364-32E-08</td>
<td>6 ckt, 4 ckt and 9 ckt Condition I 10 Cycles Mated</td>
</tr>
<tr>
<td>C3</td>
<td>Humidity</td>
<td>ANSI/EIA 364-31C-08</td>
<td>6 ckt Condition C (504 h) Method III (Cycling) nonenergized Omit steps 7a and 7b</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 ckt Condition A (96 h) Method II (Cycling) nonenergized Omit steps 7a and 7b</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9 ckt Condition A (96h) Method II (Steady State) nonenergized</td>
</tr>
</tbody>
</table>

Table 7 – Performance Group C

Note:

1) This table is equivalent to Performance Group B Tables 4-4 (6 ckt), 4-13 (4 ckt) and 4-27 (9 ckt) of IEEE Std 1394-2008.
2) All ANSI/EIA test ID numbers referenced were updated to the most recent ID numbers.

Acknowledgement for compliance to IEEE royalty-free permission policy: “From IEEE Std 2008 Copyright 2008. All rights reserved.”
5.6.4 Performance Group D: Insulator integrity when subjected to thermal shock and stress

<table>
<thead>
<tr>
<th>Phase</th>
<th>Test</th>
<th>ID No.</th>
<th>Severity or conditions</th>
<th>Measurements to be performed</th>
<th>ID No.</th>
<th>Requirements</th>
<th>Performance Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>Withstanding Voltage</td>
<td>ANSI/EIA 364-20D-08</td>
<td>6 ckt Test Voltage 500 Vdc ± 50 Vdc Method C Unmated and Unmounted</td>
<td>Withstanding Voltage (Same conditions as D1)</td>
<td>ANSI/EIA 364-20D-08</td>
<td>No flashover. No sparkover. No excessive leakage No breakdown.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D2</td>
<td>Thermal Shock</td>
<td>ANSI/EIA 364-32E-08</td>
<td>Condition I 10 Cycles (Unmated)</td>
<td>Withstanding Voltage (Same conditions as D1)</td>
<td>ANSI/EIA 364-20D-08</td>
<td>No flashover. No sparkover. No excessive leakage No breakdown.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D3</td>
<td>Insulation Resistance</td>
<td>ANSI/EIA 364-21D-08</td>
<td>6 ckt Test Voltage 500 Vdc ± 50 Vdc Method C Unmated and Unmounted</td>
<td>Insulation Resistance (Same conditions as D3)</td>
<td>ANSI/EIA 364-21D-08</td>
<td>100 MΩ minimum between adjacent contacts and contacts and shell</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D4</td>
<td>Humidity</td>
<td>ANSI/EIA 364-31C-08</td>
<td>Condition A (96 h) Method III (Cyclic) nonenergized Omit steps 7a and 7b</td>
<td>Insulation Resistance (Same conditions as D3)</td>
<td>ANSI/EIA 364-21D-08</td>
<td>100 MΩ minimum between adjacent contacts and contacts and shell</td>
<td></td>
</tr>
</tbody>
</table>

Table 8 – Performance Group D

Note:

1) This table is equivalent to Performance Group C Tables 4-5 (6 ckt), 4-14 (4 ckt) and 4-28 (9 ckt) of IEEE Std 1394-2008.

2) All ANSI/EIA test ID numbers referenced were updated to the most recent ID numbers.
Acknowledgement for compliance to IEEE royalty-free permission policy: “From IEEE Std 2008 Copyright 2008. All rights reserved.”
5.6.5 Performance Group E: DC electrical functionality when subjected to mechanically cycling and corrosive gas exposure (REFERENCE)

<table>
<thead>
<tr>
<th>Phase</th>
<th>Test Description</th>
<th>ANSI/EIA ID</th>
<th>Severity or Conditions</th>
<th>Measurements to be performed</th>
<th>ANSI/EIA ID</th>
<th>Performance Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>Mating and unmating forces</td>
<td>ANSI/EIA 364-13D-07</td>
<td>Mount socket rigidly. Insert plug by hand (Mate Only)</td>
<td>Low Level Contact Resistance</td>
<td>ANSI/EIA 364-23C-06</td>
<td>6 ckt 30 mΩ maximum initial per mated contact 4 ckt and 9 ckt 50 mΩ maximum initial per mated contact</td>
</tr>
<tr>
<td>E2</td>
<td>Continuity</td>
<td>ANSI/EIA 364-46B-06</td>
<td>See Note B</td>
<td>Contact resistance braid to socket shell</td>
<td>ANSI/EIA 364-06C-06</td>
<td>50 mΩ maximum initial from braid to socket shell at 100 mA 5Vdc open circuit maximum</td>
</tr>
<tr>
<td>E3</td>
<td>Durability</td>
<td>ANSI/EIA 364-09C-06</td>
<td>6 ckt (a) 4 mated pairs 5 cycles (b) 6 mated pairs 750 cycles automatic cycling to 750 cycles at rate of 500 cycles / h ±50 cycles / h</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 ckt and 9 ckt (a) 4 mated pairs 5 cycles (b) 6 mated pairs 500 cycles automatic cycling to 500 cycles at rate of 500 cycles / h ±50 cycles / h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E4</td>
<td>None</td>
<td></td>
<td></td>
<td>Low Level Contact Resistance</td>
<td>ANSI/EIA 364-23C-06</td>
<td>30 mΩ maximum change from initial per mated contact</td>
</tr>
<tr>
<td>E5</td>
<td>Continuity</td>
<td>ANSI/EIA 364-46B-06</td>
<td>See Note B</td>
<td>Contact resistance braid to socket shell</td>
<td>ANSI/EIA 364-06C-06</td>
<td>50 mΩ maximum change from initial from braid to socket shell at 100 mA 5Vdc open circuit maximum</td>
</tr>
<tr>
<td>E6</td>
<td>Mixed Flowing Gas</td>
<td>ANSI/EIA 364-65A-98</td>
<td>Class II exposures: (a) 4 pairs 1 day unmated (b) 6 pairs 10 days mated</td>
<td>Low Level Contact Resistance</td>
<td>ANSI/EIA 364-23C-06</td>
<td>30 mΩ maximum change from initial per mated contact</td>
</tr>
</tbody>
</table>

Table 9 – Performance Group E (REFERENCE)
<table>
<thead>
<tr>
<th>Phase</th>
<th>Test</th>
<th>Measurements to be performed</th>
<th>Requirements Performance Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>E7</td>
<td>Durability</td>
<td>6 ckt (a) 4 mated pairs 5 cycles (b) 6 mated pairs 750 cycles automatic cycling to 750 cycles at rate of ±50 cycles / h</td>
<td>ANSI/EIA 364-23C-06 30 mΩ maximum change from initial per mated contact</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 ckt and 9 ckt (a) 4 mated pairs 5 cycles (b) 6 mated pairs 500 cycles automatic cycling to 500 cycles at rate of 500 cycles / h ±50 cycles / h</td>
<td></td>
</tr>
<tr>
<td>E8</td>
<td>Mixed Flowing Gas</td>
<td>Class II exposures: (a) 4 pairs 10 day mated (b) 6 mated pairs 10 days mated</td>
<td>ANSI/EIA 364-23C-06 30 mΩ maximum change from initial per mated contact</td>
</tr>
<tr>
<td>E9</td>
<td>Continuity</td>
<td>See Note B</td>
<td>ANSI/EIA 364-23C-06 50 mΩ maximum change from initial from braid to socket shell at 100 mA 5Vdc open circuit maximum</td>
</tr>
</tbody>
</table>

Note B:
1) Shield and contact resistance measurement location see IEEE Std 1394-2008 figure 4-10 or 4-22.

Table 9 – Performance Group E (REFERENCE) (Continued)

Note:
1) This table is equivalent to Performance Group D Tables 4-6 (6 ckt), 4-15 (4 ckt) and 4-29 (9 ckt) of IEEE Std 1394-2008.

2) All ANSI/EIA test ID numbers referenced were updated to the most recent ID numbers.

Acknowledgement for compliance to IEEE royalty-free permission policy: “From IEEE Std 2008 Copyright 2008. All rights reserved.”
5.6.6 Performance Group F: DC electrical functionality and unmating forces when subjected to temperature life stress

<table>
<thead>
<tr>
<th>Phase</th>
<th>Test</th>
<th>Measurements to be performed</th>
<th>Requirements Performance Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>Mating and Unmating Forces</td>
<td>Mount socket rigidly. Insert receptacle by hand</td>
<td>Mating only.</td>
</tr>
<tr>
<td></td>
<td>Auto rate: 25 mm/min</td>
<td>Unmating only</td>
<td>ANSI/EIA 364-13D-07</td>
</tr>
<tr>
<td>F2</td>
<td>None</td>
<td>Low Level Contact Resistance</td>
<td>ANSI/EIA 364-23C-06</td>
</tr>
<tr>
<td>F3</td>
<td>Continuity</td>
<td>Contact resistance braid to socket shell</td>
<td>ANSI/EIA 364-06C-06</td>
</tr>
<tr>
<td>F4</td>
<td>Temperature Life</td>
<td></td>
<td>ANSI/EIA 364-23C-06</td>
</tr>
<tr>
<td></td>
<td>ANSI/EIA 364-17B-99</td>
<td>6 ckt Condition 4 (105 °C) Method A 250 h (mated)</td>
<td>Low Level Contact Resistance</td>
</tr>
<tr>
<td></td>
<td>4 ckt and 9 ckt Condition 2 (79 °C) Method A 96 h (mated)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F5</td>
<td>Continuity</td>
<td>Contact resistance braid to socket shell</td>
<td>ANSI/EIA 364-06C-06</td>
</tr>
</tbody>
</table>

Note B:
1) Shield and contact resistance measurement location see IEEE Std 1394-2008 figure 4-10 or 4-22.

Table 10 – Performance Group F

Note:
1) This table is equivalent to Performance Group E Tables 4-7 (6 ckt), 4-16 (4 ckt) and 4-30 (9 ckt) of IEEE Std 1394-2008.

2) All ANSI/EIA test ID numbers referenced were updated to the most recent ID numbers.

Acknowledgement for compliance to IEEE royalty-free permission policy: “From IEEE Std 2008 Copyright 2008. All rights reserved.”
5.6.7 Performance Group G: Unmating forces when subjected to mechanically cycling

<table>
<thead>
<tr>
<th>Phase</th>
<th>Test Description</th>
<th>Severity or Conditions</th>
<th>Measurements to be performed</th>
<th>Requirements Performance Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>Mating and Unmating Forces</td>
<td>Mount Socket rigidly. Insert Plug by hand.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ANSI/EIA 364-13D-07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G2</td>
<td>Durability</td>
<td></td>
<td>ANSI/EIA 364-13D-07</td>
<td>6 ckt: Unmating force: 9.8 N min to 39.2 N max</td>
</tr>
<tr>
<td></td>
<td>ANSI/EIA 364-09C-06</td>
<td>6 ckt: Automatic cycling to 1500 cycles at rate of 500 cycles / h ±50 cycles / h</td>
<td>Mating and Unmating Forces (Unmating only)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 ckt and 9 ckt: Automatic cycling to 1000 cycles at rate of 500 cycles / h ±50 cycles / h</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 11 – Performance Group G

Note:

1) This table is equivalent to Performance Group F Tables 4-8 (6 ckt), 4-17 (4 ckt) and 4-31 (9 ckt) of IEEE Std 1394-2008.

2) All ANSI/EIA test ID numbers referenced were updated to the most recent ID numbers.

Acknowledgement for compliance to IEEE royalty-free permission policy: “From IEEE Std 2008 Copyright 2008. All rights reserved.”
5.6.8 Performance Group H: General tests

Suggested procedures to test miscellaneous but important aspects of the interconnect system are given in Table 12. Since the tests listed below may be destructive, separate samples shall be used for each test. The number of samples to be used is listed under the test title.

<table>
<thead>
<tr>
<th>Phase</th>
<th>Test</th>
<th>Measurements to be performed</th>
<th>Requirements Performance Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>Electrostatic Discharge (3 Cable assemblies with plug at one end 25.4 cm long and 3 Sockets)</td>
<td>IEC 61000-4-2 (Edition 2, 12-2008) 1.0-8.0 kV in 1.0 kV steps. Use 8 mm ball probe. (Unmated) Evidence of discharge</td>
<td>No evidence of discharge to any of the contacts; discharge to the shield is acceptable</td>
</tr>
<tr>
<td>H2</td>
<td>Cable axial pull test (5 Cable assemblies with plug at one end 2 m long)</td>
<td>ANSI/EIA 364-38C-08 6 ckt Fix Plug housing and apply a 98 N load for one minute on cable axis 4 ckt Fix Plug housing and apply a 49 N load for one minute on cable axis 9 ckt Fix Plug housing and apply a 50 N load for one minute on cable axis ANSI/EIA 364-46B-06 a. Continuity b. Visual</td>
<td>No discontinuity at 1 μs or longer. (Each contact) No jacket tears or visual exposure of shield. No jacket movement greater than 1.5 mm at point of exit.</td>
</tr>
</tbody>
</table>

Table 12 – Performance Group H
<table>
<thead>
<tr>
<th>Phase</th>
<th>Test Description</th>
<th>Title</th>
<th>ID No.</th>
<th>Severity or condition</th>
<th>Measurement to be performed</th>
<th>ID No.</th>
<th>Requirements Performance Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>H3 6 ckt</td>
<td>Cable Flexing (5 cable assemblies with plugs at one end 2 m long)</td>
<td>ANSI/EIA 364-41D-08</td>
<td>6 ckt</td>
<td>Condition I dimension X=3.7 times the cable diameter; 100 cycles in each of two planes. See IEEE Std 1394-2008 Figures 4-23 for cable flex test fixture</td>
<td>a. Withstanding Voltage</td>
<td>ANSI/EIA 364-20D-08</td>
<td>No flashover. No sparkover. No excessive leakage No breakdown.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>b. Insulation Resistance</td>
<td>ANSI/EIA 364-21D-08 Test Voltage 500 Vdc ± 50 Vdc Method C Unmated and Unmounted</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>c. Continuity</td>
<td>ANSI/EIA 364-46B-06</td>
<td>No discontinuity at 1 μs or longer. (Each contact)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>d. Visual</td>
<td>No jacket tears or visual exposure of shield. No jacket movement greater than 1.5 mm at point of exit.</td>
<td></td>
</tr>
<tr>
<td>H3 4 ckt 9 ckt</td>
<td>Cable Flexing (5 cable assemblies with plugs at one end 2 m long)</td>
<td>ANSI/EIA 364-41D-08</td>
<td>4 ckt and 9 ckt</td>
<td>Condition I dimension X=5.5 times the cable diameter; 100 cycles in each of two planes. See IEEE Std 1394-2008 Figure 4-23 (4 ckt) or Figure 4-51 (9 ckt) for cable flex test fixture</td>
<td>a. Withstanding Voltage</td>
<td>ANSI/EIA 364-20D-08</td>
<td>No flashover. No sparkover. No excessive leakage No breakdown.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>b. Insulation Resistance</td>
<td>ANSI/EIA 364-21D-08 Test Voltage 100 Vdc ± 10 Vdc Method C Unmated and Unmounted</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>c. Continuity</td>
<td>ANSI/EIA 364-46B-06</td>
<td>No discontinuity at 1 μs or longer. (Each contact)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>d. Visual</td>
<td>No jacket tears or visual exposure of shield. No jacket movement greater than 1.5 mm at point of exit.</td>
<td></td>
</tr>
</tbody>
</table>

Table 12 – Performance Group H (Continued)

Note:

1) This table is equivalent to Performance Group G Tables 4-9 (6 ckt), 4-18 (4 ckt) and 4-32 (9 ckt) of IEEE Std 1394-2008.

2) All ANSI/EIA test ID numbers referenced were updated to the most recent ID numbers.

Acknowledgement for compliance to IEEE royalty-free permission policy: “From IEEE Std 2008 Copyright 2008. All rights reserved.”
5.6.9 Performance Group I: High speed electrical functionality

<table>
<thead>
<tr>
<th>Phase</th>
<th>Test</th>
<th>Severity or conditions</th>
<th>Measurements to be performed</th>
<th>Requirements Performance Level</th>
</tr>
</thead>
</table>
| I1 | Impedance (Cable) | 6 ckt and 4 ckt 200 ps rise time at 1 ns and 2.5 ns beyond the connector launch plane | Differential Mode (Cable) | $Z_{TPA} = 110 \Omega \pm 6 \Omega$
$Z_{TPB} = 110 \Omega \pm 6 \Omega$
$Z_{TPA1} = Z_{TPA2} \pm 4\%$
$Z_{TPB1} = Z_{TPB2} \pm 4\%$
$Z_{TPACM} = 33 \Omega \pm 6 \Omega$
$Z_{TPBCM} = 33 \Omega \pm 6 \Omega$ |
| | | | | 4 ckt
$Z_{TPA} = 110 \Omega \pm 6 \Omega$
$Z_{TPB} = 110 \Omega \pm 6 \Omega$
$Z_{TPA1} = Z_{TPA2} \pm 4\%$
$Z_{TPB1} = Z_{TPB2} \pm 4\%$
$Z_{TPACM} = 110 \Omega \pm 25 \Omega$
$Z_{TPBCM} = 110 \Omega \pm 25 \Omega$ |
| I2 | Impedance (Connector) | 6 ckt and 4 ckt 500 ps rise time at 50 ps, 100 ps and 150 ps beyond the connector launch plane | Differential Mode (Connector) | $Z_{TPAconn} = 110 \Omega \pm 15 \Omega$
$Z_{TPBconn} = 110 \Omega \pm 15 \Omega$ |
| I3 | Attenuation | 6 ckt and 4 ckt L = 4.5 m at 100 MHz, 200 MHz and 400 MHz | Attenuation | 6 ckt and 4 ckt
100 MHz < 2.3 dB
200 MHz < 3.2 dB
400 MHz < 5.8 dB |
| I4 | Velocity of Propagation Delay | 6 ckt and 4 ckt Per meter average over 50 MHz, 100 MHz and 200 MHz | Differential Mode | 6 ckt and 4 ckt
$V_{TPA} \leq 5.05 \text{ ns/m}$
$V_{TPB} \leq 5.05 \text{ ns/m}$
$V_{TPACM} \leq 5.05 \text{ ns/m}$
$V_{TPBCM} \leq 5.05 \text{ ns/m}$ |

<table>
<thead>
<tr>
<th>Title</th>
<th>ID No.</th>
<th>Title</th>
<th>ID No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE Std 1394-2008 Annex K.3</td>
<td>6 ckt and 4 ckt 200 ps rise time at 1 ns and 2.5 ns beyond the connector launch plane</td>
<td>IEEE Std 1394-2008 Annex K.3</td>
<td>6 ckt and 9 ckt 200 ps rise time at 1 ns and 2.5 ns beyond the connector launch plane</td>
</tr>
<tr>
<td>IEEE Std 1394-2008 Annex K.3</td>
<td>500 ps rise time at 50 ps, 100 ps and 150 ps beyond the connector launch plane</td>
<td>IEEE Std 1394-2008 Annex K.3.2</td>
<td>6 ckt and 4 ckt 9 ckt 80 ps rise time beyond the connector launch plane</td>
</tr>
</tbody>
</table>
| IEEE Std 1394-2008 Annex K.4 | 6 ckt and 4 ckt L = 4.5 m at 100 MHz, 200 MHz and 400 MHz | IEEE Std 1394-2008 Annex K.4.2 & K.4.3 | 6 ckt and 4 ckt 9 ckt 250 MHz < 3.30 dB
400 MHz < 4.10 dB
800 MHz < 6.20 dB
1500 MHz < 10.0 dB
3000 MHz < 16.8 dB
4000 MHz < 21.0 dB |
| IEEE Std 1394-2008 Annex K.5 | Per meter average over 50 MHz, 100 MHz and 200 MHz | IEEE Std 1394-2008 Annex K.5.2 & K.5.3 | 6 ckt and 4 ckt 9 ckt 250 MHz < 3.30 dB
400 MHz < 4.10 dB
800 MHz < 6.20 dB
1500 MHz < 10.0 dB
3000 MHz < 16.8 dB
4000 MHz < 21.0 dB |

Table 13 – Performance Group I
5.6.9 Performance Group I: High speed electrical functionality (Continued)

<table>
<thead>
<tr>
<th>Phase</th>
<th>Test</th>
<th>Measurement to be performed</th>
<th>Requirements Performance Level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Title</td>
<td>ID No.</td>
<td>Title</td>
</tr>
<tr>
<td>15</td>
<td>Skew</td>
<td>IEEE Std 1394-2008 Annex K.6.2 ANSI/EIA 364-103-06</td>
<td>6 ckt and 4 ckt Between signal pairs at 50 MHz, 100 MHz and 200 MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9 ckt</td>
</tr>
<tr>
<td>16</td>
<td>Crosstalk</td>
<td>IEEE Std 1394-2008 Annex K.8 ANSI/EIA 364-90-07</td>
<td>6 ckt and 4 ckt 1 MHz to 75 MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9 ckt</td>
</tr>
<tr>
<td>17</td>
<td>Power pair dc resistance (6 ckt & 9 ckt)</td>
<td>IEEE Std 1394-2008 Annex K.7.3</td>
<td>6 ckt & 9 ckt IEEE Std 1394-2008 Annex K.7.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 13 – Performance Group I (Continued)

Note:

1) This table is created using information contained in Section 4 and Annex K of IEEE Std 1394-2008.

2) All ANSI/EIA test ID numbers referenced were updated to the most recent ID numbers.

Acknowledgement for compliance to IEEE royalty-free permission policy: “From IEEE Std 2008 Copyright 2008. All rights reserved.”
5.7 Visual Examination

Visual examination of the test samples for acceptable workmanship and physical damage that will prevent mechanical and electrical operation shall be performed initially and after each environmental and stress test.

Workmanship generally accepted by the electrical and electronics industry and commonly used in electrical connector and cable assembly evaluation is required for all samples submitted for qualification. Any deviation from these accepted physical and or workmanship standards during the qualification program shall be deemed as failure.

Additionally, the Manufacturer’s Name or Logo shall be on each sample.

5.8 Data Measurements

All contact positions shall be measured. Sample identification and contact position number shall identify the data measurements. The results of each test shall be recorded as data.

Unless otherwise specified in the specific procedures used, measurements following exposure shall be performed within 24 hours and after the samples have recovered to room ambient conditions. The test samples shall be handled in a manner so as not to disturb the contact interface. It is preferred to perform measurements without handling the test samples. Unless otherwise specified, the specimen shall remain mated to the specimen that they were mated for the initial measurements throughout the exposures.

5.9 Failure Analysis

Connector and cable assembly failures may be analyzed at the end of the testing. Test sequence shall not be interrupted until completion. Failures attributed to operator error, equipment, and test printed circuit boards; etc. shall not be classified as a connector failure.

The test laboratory and the manufacturer will jointly review the failed samples and conduct the failure analysis. In performing the failure analysis, samples may remain mated, then potted and sectioned followed by examination. The manufacturer should be consulted for conducting destructive failure analysis such as potting and cross sectioning. The test laboratory and the manufacturer will jointly compile a failure analysis report and establish a corrective action plan and prepare a schedule to resubmit samples.

If the test laboratory and the manufacturer disagree on the failure analysis results and cannot come to resolution, a summary of the failure analysis report and the corrective action plan that does not contain any confidential information of the manufacturer shall be sent to the Quality Review Board (QRB) of the 1394 Trade Association. The QRB will review the report and make recommendations for resolving the disputes between the test laboratory and the manufacturer.

All failure analysis results, conclusions and corrective actions shall remain property of the submitting manufacturer.
5.10 Test Report

The testing laboratory shall prepare a test report for review and approval by the Compliance Logo Program Administrator of 1394 Trade Association and the submitting manufacturer. A final test report will be supplied to both the Compliance Logo Program Administrator of 1394 Trade Association and the submitting manufacturer in both hard copy and electronic format. Competitive manufacturer’s data will not be included except in cross mating tests. All competitive manufacturer identities will be eliminated from the report.

All test report results and conclusions shall remain confidential property of the submitting manufacturer.

The test report shall contain a performance group description, summary of the results, discussion of any test problems, conclusions, test data, test procedures including severity of the conditions, test equipment used in the testing, schematics, photographs, etc. as applicable.

Also included in the report shall be:

1) Test laboratory completing the evaluation
2) PC board socket, cable plug kit and cable assembly manufacturer, product descriptions and product reference IDs that shall be traceable to commercial product numbers by the TA for purpose of granting the compliance logos.
3) Cable manufacturer and product descriptions and product reference IDs that shall be traceable to commercial product numbers by the TA for purpose of granting the compliance logos, conductor size and type (AWG and number of strands and insulation material) and outer and signal shield construction.
4) Cable assembly termination technique, tooling and process information
5) Printed circuit test board manufacturer and part number
6) Additional special preparation performed

5.11 Test Sample Disposition

Following the successful completion of the test sequences, each test sample shall be separately packaged in clear plastic and retained by the test laboratory for not less than one year. Manufacturer, sample identification and test report information shall be included on each package. These archived samples are only for the reference use of the test laboratory and the submitting manufacturer.
A.1 Contact finish on plug and socket contacts

It is necessary to standardize the electroplated finish on the contacts to assure the compatibility of plugs and sockets from different sources. The following standardized electroplatings are compatible, and one should be used on contacts.

1) $0.76 \mu m$ (30 μin), minimum gold, over $1.27 \mu m$, minimum, nickel.
2) $0.05 \mu m$ (2 μin), minimum, gold, over $0.76 \mu m$ (30 μin) minimum, palladium, over $1.27 \mu m$ (50 μin), minimum, nickel.
3) $0.05 \mu m$ (2 μin), minimum, gold, over $0.76 \mu m$ (30μin) minimum, palladium-nickel alloy (80% Pd-20% Ni), over $1.27 \mu m$ (50 μin), minimum, nickel.

NOTE –
- Selective plating on contacts is acceptable. In that case, one of the above electroplatings shall cover the complete area of contact, including the contact wipe area.
- Copper strike is acceptable under the nickel electroplate.
- Palladium strike is acceptable over the nickel electroplate.

A.2 Termination finish on plug and socket contacts

It is acceptable to use an electroplate of $3.04 \mu m$ (120 μin) tin or tin alloy over a minimum thickness of $1.27 \mu m$ (50 μin) nickel. A copper strike is acceptable under the nickel.

A.3 Shell finish on plugs and sockets

It is necessary to standardize the plated finish on the shells to assure compatibility of products from different sources. Both shells shall be electroplated with a minimum of $3.03 \mu m$ (120 μin) of tin or tin alloy, or a galvanically compatible alloy, over a suitable underplate.

Note:

Annex A was copied from sections 4.2.1.5, 4.2.1.6, 4.2.1.7 in IEEE Std. 1394-2008 with the following changes:

1) Deleted "tin-lead" in section 4.2.1.6 and added “tin or tin alloy” for termination finish on plug and socket contacts.

Acknowledgement for compliance to IEEE royalty-free permission policy: “From IEEE Std 1394-2008. Copyright 2008 IEEE. All rights reserved”
B.1 Contact finish on plug and socket contacts

It is necessary to standardize the electroplated finish on the contacts to assure the compatibility of plugs and sockets from different sources. The following standardized electroplatings are compatible, and one should be used on contacts.

1) 0.76 μm (30 μin), minimum gold, over 1.27 μm, minimum, nickel.
2) 0.05 μm (2 μin), minimum, gold, over 0.76 μm (30 μin) minimum, palladium, over 1.27 μm (50 μin), minimum, nickel.
3) 0.05 μm (2 μin), minimum, gold, over 0.76 μm (30 μin) minimum, palladium-nickel alloy (80% Pd-20% Ni), over 1.27 μm (50 μin), minimum, nickel.

NOTE –
- Selective plating on contacts is acceptable. In that case, one of the above electroplatings shall cover the complete area of contact, including the contact wipe area.
- Copper strike is acceptable under the nickel electroplate.
- Palladium strike is acceptable over the nickel electroplate.

B.2 Termination finish on plug and socket contacts

It is acceptable to use an electroplate of 3.04 μm (120 μin) tin or tin alloy over a minimum thickness of 1.27 μm (50 μin) nickel. A copper strike is acceptable under the nickel.

B.3 Shell finish on plugs and sockets

It is necessary to standardize the plated finish on the shells to insure compatibility of products from different sources. Both shells shall be electroplated with a minimum of 3.03 μm (120 μin) of tin or tin alloy, or a galvanically compatible alloy, over a suitable underplate.

Note:

Annex B was copied from sections 4.3.1.4, 4.3.1.5, 4.3.1.6 in IEEE Std. 1394-2008 with the following changes:

1). Deleted “tin-lead” in section 4.2.1.6 and added “tin or tin alloy” for termination finish on plug and socket contacts.

Acknowledgement for compliance to IEEE royalty-free permission policy: “From IEEE Std 1394-2008. Copyright 2008 IEEE. All rights reserved”
Annex C
(Normative)

IEEE 1394-2008 (9 ckt) Finish & Dimensional Requirements

C.1 Contact finish on plug and socket contacts

It is necessary to standardize the electroplated finish on the contacts to assure the compatibility of plugs and sockets from different sources. The following standardized electroplatings are compatible, and one should be used on contacts.

1) 0.76 μm (30 μin), minimum gold, over 1.27 μm, minimum, nickel.
2) 0.05 μm (2 μin), minimum, gold, over 0.76 μm (30 μin) minimum, palladium-nickel alloy (80% Pd-20% Ni), over 1.27 μm (50 μin), minimum, nickel

NOTE –
- Selective plating on contacts is acceptable. In that case, one of the above electroplatings shall cover the complete area of contact, including the contact wipe area.
- Copper strike is acceptable under the nickel electroplate.
- Palladium strike is acceptable over the nickel electroplate.

C.2 Termination finish on plug and socket contacts

It is acceptable to use an electroplate of 3.04 μm (120 μin) tin or tin alloy over a minimum thickness of 1.27 μm (50 μin) nickel. A copper strike is acceptable under the nickel.

C.3 Shell finish on plugs and sockets

It is necessary to standardize the plated finish on the shells to insure compatibility of products from different sources. Both shells shall be electroplated with a minimum of 3.03 μm (120 μin) of tin or tin alloy, or a galvanically compatible alloy, over a suitable underplate.

Note:

Annex C was copied from sections 4.4.1.3, 4.4.1.4, 4.4.1.5 in IEEE Std. 1394-2008.

Acknowledgement for compliance to IEEE royalty-free permission policy: “From IEEE Std 1394-2008. Copyright 2008 IEEE. All rights reserved”