AMI-C Power Management EPoC System Description V0.90

April 6, 2009

Sponsored by:
1394 Trade Association

Accepted for publication by
This draft specification has been accepted by the 1394 Trade Association Board of Directors

Abstract
This specification is based on the AMI-C 3033 Power Management EPoC System Description V0.90. This document outlines the EPoC (Embedded Proof of Concept) system of Power Management Specification for IEEE1394 devices.

Keywords
IEEE 1394, Serial Bus, AMI-C, Automotive, Power Management, EPoC
AMI-C 3034

AMI-C 3034 Power Management Test Document.

V1.00

2005-08-24
1394 Trade Association Specifications are developed within Working Groups of the 1394 Trade Association, a non-profit industry association devoted to the promotion of and growth of the market for IEEE 1394-compliant products. Participants in Working Groups serve voluntarily and without compensation from the Trade Association. Most participants represent member organizations of the 1394 Trade Association. The specifications developed within the working groups represent a consensus of the expertise represented by the participants.

Use of a 1394 Trade Association Specification is wholly voluntary. The existence of a 1394 Trade Association Specification is not meant to imply that there are not other ways to produce, test, measure, purchase, market or provide other goods and services related to the scope of the 1394 Trade Association Specification. Furthermore, the viewpoint expressed at the time a specification is accepted and issued is subject to change brought about through developments in the state of the art and comments received from users of the specification. Users are cautioned to check to determine that they have the latest revision of any 1394 Trade Association Specification.

Comments for revision of 1394 Trade Association Specifications are welcome from any interested party, regardless of membership affiliation with the 1394 Trade Association. Suggestions for changes in documents should be in the form of a proposed change of text, together with appropriate supporting comments.

Interpretations: Occasionally, questions may arise about the meaning of specifications in relationship to specific applications. When the need for interpretations is brought to the attention of the 1394 Trade Association, the Association will initiate action to prepare appropriate responses.

Comments on specifications and requests for interpretations should be addressed to:

Editor, 1394 Trade Association
1560 East Southlake Blvd, Suite 220
Southlake, TX 76092
USA

1394 Trade Association Specifications are adopted by the 1394 Trade Association without regard to patents which may exist on articles, materials or processes or to other proprietary intellectual property which may exist within a specification. Adoption of a specification by the 1394 Trade Association does not assume any liability to any patent owner or any obligation whatsoever to those parties who rely on the specification documents. Readers of this document are advised to make an independent determination regarding the existence of intellectual property rights, which may be infringed by conformance to this specification.
Trademarks cited in this document

Any trademarks, registered trademarks, or service marks used in this document are the property of their respective owners and are hereby recognized.

<table>
<thead>
<tr>
<th>Name</th>
<th>Phrase</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Revision log

<table>
<thead>
<tr>
<th>Document no.</th>
<th>Version no.</th>
<th>Version date</th>
</tr>
</thead>
<tbody>
<tr>
<td>3033</td>
<td>0.90</td>
<td>2005-07-20</td>
</tr>
</tbody>
</table>

Document title
AMI-C Power Management EPoC system Document

<table>
<thead>
<tr>
<th>Revision date</th>
<th>Affected sections</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005-07-20</td>
<td>Version 1.00 released for publication. This version is the basis for all future revisions.</td>
</tr>
</tbody>
</table>
Contents

Foreword .. 7
Introduction ... 7
1 Scope ... 7
2 References ... 7
 2.1 Normative references ... 7
 2.2 Informative references ... 7
3 Abbreviations ... 7
4 Definitions .. 8
5 System Architecture Outline ... 8
 5.1 Purpose .. 8
 5.2 Overview ... 8
 5.3 Operation .. 9
6 Description of EPoC Components .. 9
 6.1 Host Unit ... 10
 6.2 Device Unit ... 10
 6.3 CCP ... 10
 6.4 Power Master PC ... 10
 6.5 Power Slave PC .. 10
 6.6 IIDC Camera .. 10
 6.7 P-Mode Repeater .. 11
 6.8 P-Mode I/F Box .. 11
 6.9 PM & Power Cable .. 13
 6.10 System Power Master (SPM) .. 14
 6.11 Local Power Manager (LPM) .. 14
 6.12 Power Distribution Manager (PDM) ... 15
 6.13 Key Position Application .. 15
 6.14 P-Mode Master Application ... 15
 6.15 P-Mode Slave Application ... 16
 6.16 CMS module .. 16
 6.17 Serial communication module ... 16
 6.18 Camera Application .. 17
7 EPoC Power Management Scenario .. 18
 7.1 Wakeup Scenario .. 18
 7.2 Shutdown Scenario ... 19
Annex A Requirement and recommendation language 21
 A.1 Requirements ... 21
 A.2 Recommendations ... 21
Annex B Request for change form ... 22

Figures

Figure 1 – AMI-C Power Management Model .. 8
Figure 2 – Power Management EPoC System Overview 9
Figure 3 – Power Management EPoC System .. 10
Figure 4 – Wakeup request time chart .. 11
Figure 5 – Sequence of P-Mode I/F BOX .. 13
Figure 6 – PM & Power Connector ... 13
Figure 7 – Key Position Application GUI (ON / OFF) 15
Figure 8 – Software architecture of the P-Mode Master application 16
Figure 9 – Software architecture of the P-Mode Master application 16
Figure 10 – Wakeup of PHY/Link Layer ... 18
Figure 11 – Send ”Wakeup” Command ... 18
Figure 12 – Send ”Wakeup” Command ... 19
Figure 13 – Receive ”ACCEPT” response ... 20
Figure 14 – Shutdown of PHY/Link Layer ... 20

Tables
Table 1 – PM Repeater Mode Table ... 11
Foreword

Introduction
This document outlines the EPoC (Embedded Proof of Concept) system of Power Management Specification for IEEE1394 devices.

1 Scope
This document describes the components (hardware and software) of this system, the interfaces between each component, and a rough description of the manner of operation.

2 References

2.1 Normative references
(1) AMI-C 2001 AMI-C network protocol requirements for vehicle interface access v1.0
(2) AMI-C 2002 AMI-C Common Message Set v1.02
(3) AMI-C 3023 AMI-C Power Management Specification v0.5
(4) AMI-C 4001 AMI-C physical specification v1.0

2.2 Informative references
(1) AMI-C 3003 AMI-C requirements and guidelines for 1394 Automotive networks v0.90
(2) AMI-C 3003-4 1394 Automotive proof-of-concept implementation (steps 4, 5, and 6) v1.00
(3) TA Document 2001018, 1394 Automotive Specification (IDB-1394) 1.0
(4) P-Mode Repeater specification (Sumitomo)
(5) AMI-C 1394 Power Management EPoC Key Position Application Specification (Tata Elxsi)
(6) AMI-C 1394 Power Management EPoC P-Mode I/F-BOX Specification r04 (Xanavi)
(7) AMI-C Power Management EPoC Architecture rev 0.6 (WIPRO)

3 Abbreviations
The abbreviations used by this document are described below.
AMI-C: Automotive Multimedia Interface Collaboration
ASN: Abstract Syntax Notation
4 Definitions

The definitions used in this document are described below.

5 System Architecture Outline

5.1 Purpose

This prototype is used for system level evaluation of a part of function of AMI-C power management specification. Function evaluated in this prototype is shut-down and wake-up.

5.2 Overview

The AMI-C power management model shown in Figure 1.

![Figure 1 – AMI-C Power Management Model](image)

The AMI-C power management EPoC system architecture outline is shown in Figure 2. This prototype was made to resemble AMI-C power management model (Figure 1).
The Power Master PC emulates System Manager of host unit. The Power Slave PC emulates Local Manager of device unit. The Key Position Application emulates an ignition key in host unit. The P-Mode Repeater and The P-Mode I/F Box are used for Power management function with low layer (PHY, Link) in this EPoC. The IIDC camera is used as example of Legacy Device (this does not support AMI-C Power Management Specification), and this camera is controlled by Power Slave PC. This CCP is not as specified as 1394TA.

5.3 Operation
(This is described at the future.)

6 Description of EPoC Components
The AMI-C power management EPoC components are shown in Figure 3.
6.1 **Host Unit**

The host unit is composed of a power master PC, its P-Mode repeater, and its P-Mode I/F Box.

6.2 **Device Unit**

The host unit is composed of a power slave PC, its P-Mode repeater, and its P-Mode I/F Box.

6.3 **CCP**

The CCP is composed of a P-Mode repeater itself. This CCP is not a specified as 1394TA Definition.

6.4 **Power Master PC**

This PC is used as a prototype of a host unit, providing power management for the other device units. (Power Slave PC / IIDC Camera)

6.5 **Power Slave PC**

This PC is used as a prototype of a device unit. It displays the power state as ordered by the Power Master PC.

6.6 **IIDC Camera**

This device serves as an example of a legacy device connected to the CCP. Just as with the Power Slave PC, it is a power control target. In this implementation, the camera is a commonly available IEEE1394 device.
The IIDC Camera obtains power through an IEEE1394 Cable (6PIN) from P-Mode Repeater.

6.7 P-Mode Repeater

P-Mode Repeater supplies electric power in IEEE1394 port (metal). There are three P-Mode Repeaters used in the power management EPoC.

The power management functions of the P-Mode repeater are controlled through the P-Mode I/F box and the Wakeup request button.

A P-Mode Repeater has one port for IEEE1394 metal (6PIN), 2 ports for 1394POF(2PIN), and 2 ports for PM & Power Connector.

The Table. 1 shows the relationships between the PM-Line signal from P-Mode I/F Box and P-Mode Repeater state

<table>
<thead>
<tr>
<th>PM-Line State</th>
<th>P-Mode Repeater State</th>
</tr>
</thead>
<tbody>
<tr>
<td>High (12V)</td>
<td>Sleep</td>
</tr>
<tr>
<td>Low (0V)</td>
<td>Active</td>
</tr>
</tbody>
</table>

The Figure 4 shows the relationships between the Wake up request signal from P-Mode I/F Box and P-Mode Repeater operation state.

Active state: Components are powered up and functioning.

Sleep state: Components can be in an ultra-low-power mode or powered off.

(Note: This EPoC doesn't implement the ultra-low-power mode at this point)

6.8 P-Mode I/F Box

The P-Mode I/F box is the interface between the Power Master (or slave) PC and the P-Mode repeater. Basically, the P-Mode I/F Box receives a “Sleep” or “Wakeup” control data from the Power Master PC. It controls the power state of
all P-Mode Repeaters and notifies the power status to the Power Slave PC and Power Master PC.
Two P-Mode I/F Boxes are used by the Power Master PC and Power Slave PC one-on-one.
Each P-Mode I/F Box components has a RS-232C connector port (To provide a control and PC notification interface), a PM & Power Connector port (to connect to P-Mode Repeaters), and a Power connector port (to connect to external power supply).
The P-Mode I/F Box performs the following functions:

- Receive "Wakeup" or "Sleep" control data from Power Master PC, and change PM-Line to high or low.
- Receive "Wakeup" request from a P-Mode repeater, and change PM-Line from high to low. (This function is not used in this power management EPoC.)
- Send the PM-Line status to the Power Master PC and the Power Slave PC.
- The I/F Box from the Power Master PC supplies DC power to all P-Mode repeaters, IIDC Camera and to the P-Mode I/F Box from the Power slave PC.

The Figure 5 shows the sequence of P-Mode I/F BOX in this EPoC.
6.9 PM & Power Cable

The PM & Power Cable is used for power management in this EPoC. This cable connects P-Mode Repeater to P-Mode I/F Box. And also provide connection between repeaters.

The Figure 6 show the PM & Power Connector.

PM & Power connector pin function
(1) PM-Line (High: 12V, Low:0V)
 Power control signal line, The PM-Line’s function is to wake-up or sleep a device unit and CCP.
This signal line is controlled from host unit in wake up button also this EPoC.

(2) Wakeup Line
Wake up request signal line. The Wakeup line senses a wakeup request from a device unit or P-Mode repeater.
This signal line is not used in this EPoC.

(3) Power Line (12V)
This line provides power from P-Mode I/F Box to P-Mode Repeaters and IIIDC Camera.

(4) GND
Ground

6.10 System Power Master (SPM)
The system power master controls the power mode of the entire network. Every 1394 automotive network requires one system power master.
The following are the high-level requirements for the SPM:
1) Power mode change decision algorithm.
2) A SPM enabled device may receive information about the environmental power situation from several possible sources such as key-position application.
3) Whenever the trigger for power a mode change is activated, the SPM will ANNOUNCE the power mode change on the network thereby indicating the new power status. At this point, all LPM’s can potentially switch to the new state.
4) The SPM will then send another message to all LPM’s on the network directing them to SET the new power state.
5) In the event that any LPM does switch to the new power state, the SPM may override this decision and FORCE the new power state by sending a FORCE message on the network.

6.11 Local Power Manager (LPM)
A local power manager shall be included in each device that requires a specific sleep state in order to fulfill low power requirements.
The following are the high-level requirements for the LPM:
1) The LPM’s function is the local power mode management of a particular node.
2) The LPM must be able to receive and process commands from the SPM.
3) Upon receiving an ANNOUNCE message from the SPM, the LPM must have the capability of deciding whether, it can go to the new power state.
4) In the case in which the LPM decides to go to the new power state, it must send an ACCEPT message to the SPM. Otherwise it must send a REJECT message to the SPM.
5) Within 100 msec of receiving a SET message from the SPM, the LPM must notify all the applications on the device about the new power state, save it’s internal data, close all active connections and enter a power saving condition.

6) Within 100 msec of receiving a FORCE message from the SPM, the LPM shall put its ports into a sleep state and the higher layer into an inactive state. (Compliant with PM 1394TA Spec)

6.12 Power Distribution Manager (PDM)

PDM is implemented as part of the Bus Manager. At every bus reset, the PDM builds a knowledge base of power capabilities of each node in the network by tracking the power class information in the self-ID packet of serial bus power consumers. This information is used by the PDM to decide if a port is a legacy port that has to be Disabled/Enabled instead of being suspended/resumed when SPM sends out Suspend/Resume commands.

6.13 Key Position Application

The key position application is a GUI. Through this GUI the user will be able to control the power ON and power OFF positions of the Key.

The Figure 7 show Key Position Application GUI.

![Figure 7 – Key Position Application GUI (ON / OFF)](image)

6.14 P-Mode Master Application

The P-Mode master performs the following functions:

- Receive the ON/OFF signal from the GUI.
- Generate the control command for wake up/sleep and encapsulate this control command into a P-Mode I/F Box PDU.
- Transmit this PDU to the serial communication Module.
- Encode the messages "Shutdown the network" and "Wakeup the network" in CMS format.
- Transmit the encoded messages to the SPM.

The Figure 8 show Software architecture of the P-Mode Master application.
6.15 P-Mode Slave Application

The P-Mode slave performs the following functions:

- Encode the message "Resume Local PHY + Link" in CMS format and transmit it to the LPM
- Decode and receive the CMS messages "PHY + Link resumed" and "PM-line deactivate" from the LPM
- Receive the PM-Line status PDU from the I/F box through the Serial Communication Module

The Figure 9 show Software architecture of the P-Mode Slave application.

6.16 CMS module

This module will have the necessary structure for the CMS messages. This module will take care of the encoding/decoding of all CMS messages which has to transmit/receive from/to SPM.

6.17 Serial communication module

The serial communication module

- Encodes and decodes the I/F box commands and status to and from RS232 format
- Transmits and receives the RS232 packets from the RS232 port.

6.18 Camera Application

7.18 Camera Application

The main functionality of the Camera Application is to control the legacy device, IIDC Camera, by providing a GUI which can be operated by a user for controlling the Camera operations. To realize this functionality, the Device Unit needs to have an IIDC Controller implemented in 1394 Driver layers with the Camera Application acting as the User Interface of the IIDC Controller. This IIDC Controller is to be compliant with Instrumentation and Industrial Digital Camera (IIDC) protocol over 1394 network as specified by Instrumentation and Industrial Control Working Group (II-WG) of the 1394 Trade Association, Digital Camera Sub Working Group (DC-SWG). This also mandates that the Digital cameras be IIDC (v1.30 or v1.04) compliant. Some of the parameters for the IIDC Camera that can be controlled by the IIDC Controller and in turn the Camera Application could be Video Modes, Frame rates, Brightness, Auto Exposure, Sharpness, White balance, Hue, Saturation, etc.

Along with the Controlling GUI, the Camera Application is expected to display the Camera Images on its screen which arrive as Isochronous Video Stream from the Camera Application. Cameras continue sourcing isochronous video data until the Camera application instructs the cameras to stop streaming. If a bus reset occurs during camera operation, the camera continues sourcing isochronous data immediately after the bus reset using the same isochronous channel number.

In case of Power Status change, Camera Application turns the camera power ON/OFF by writing into the Status and Control register of the camera, provided, the camera supports this feature. The Camera application can determine this by examining the Inquiry register for basic function field, Cam_Power_Cntl, of the camera.

Whether this explicit control of Camera Power is required or not has to be verified during EPoC integration testing as it is likely that disabling of Camera port by SPM would also subsequently result in Camera power being switched off as the Camera is drawing power from the cable.

To interact with LPM in order to suspend/resume itself, the Camera Application uses VIP and CMS Messages. So, in terms of AMI-C Network Communications Model, the Camera Application is a Functional Module (FM) with a fixed I-Num as there is going to be only one Camera in this EPoC.
7 EPoC Power Management Scenario

7.1 Wakeup Scenario

The Procedure of wakeup is explained below.

1) When The Key Position Application detects ON of an ignition key. It is notified P-Mode Master Application of from Key position application.
2) P-Mode Master Application transmits “Wakeup” command to P-Mode I/F Box in host unit. P-Mode I/F Box turns a state of all P-Mode Repeater into "Active state".

Figure 10 – Wakeup of PHY/Link Layer

Figure 11 – Send "Wakeup" Command
3) P-Mode Master Application notifies to System Power Master that a network was started.
4) System Power Master transmits a Wakeup command to every Local Power Manager.
5) The Local Power Master in Device Unit receives the message of Wakeup command through the 1394 network.
6) When Local Power Master in Device Unit receives the message of Wakeup command, Camera Application is activated.

7.2 Shutdown Scenario
The Procedure of shut down is explained below.

Figure 12 – Send "Wakeup" Command
1) When the Key Position Application detects OFF of an ignition key. It is notified P-Mode Master Application of from Key position application.
2) P-Mode Master Application converts OFF status into a CMS format and sends it to SPM.
3) SPM sends a SHUTDOWN request message to LPM in Host-Unit.
4) And SPM transmits to LPM in Device-Unit through IEEE1394 network at the same time.
5) LPM orders shut down to local application. (Ex: camera application)
6) LPM in host unit transmits response of SHUTDOWN request to SPM.
7) LPM in device unit transmits response of SHUTDOWN request to SPM through IEEE1394 network.

8) LPM orders to P-Mode Master Application. This order turns P-Mode Repeater into Sleep State.
9) P-Mode Master Application transmits “Sleep” command to P-Mode I/F Box in host unit. P-Mode I/F Box turns a state of all P-Mode Repeater into "Sleep state".
Annex A Requirement and recommendation language

A.1 Requirements

The following verbal forms are indicative of requirements that are to be followed in order to achieve conformance to this specification. No deviation is permitted from a requirement.

<table>
<thead>
<tr>
<th>Verbal Form</th>
<th>Equivalent Expressions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shall, Must, Will</td>
<td>Is to</td>
</tr>
<tr>
<td></td>
<td>Is required to</td>
</tr>
<tr>
<td></td>
<td>It is required that</td>
</tr>
<tr>
<td></td>
<td>Has to</td>
</tr>
<tr>
<td></td>
<td>Only … is permitted</td>
</tr>
<tr>
<td></td>
<td>It is necessary</td>
</tr>
<tr>
<td>Shall Not, Will Not</td>
<td>Is not allowed [permitted] [acceptable] [permissible]</td>
</tr>
</tbody>
</table>

A.2 Recommendations

The following verbal forms are indicative of recommendations or courses of action that are preferred, but are not necessarily required.

<table>
<thead>
<tr>
<th>Verbal Form</th>
<th>Equivalent Expressions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Should</td>
<td>It is recommended that</td>
</tr>
<tr>
<td></td>
<td>Ought to</td>
</tr>
<tr>
<td>Should Not</td>
<td>It is not recommended that</td>
</tr>
<tr>
<td>May</td>
<td>Is permitted</td>
</tr>
<tr>
<td></td>
<td>Is allowed</td>
</tr>
<tr>
<td></td>
<td>Is permissible</td>
</tr>
<tr>
<td>May Not</td>
<td>Need not</td>
</tr>
<tr>
<td></td>
<td>It is not required that</td>
</tr>
<tr>
<td></td>
<td>No … is required</td>
</tr>
<tr>
<td>Can</td>
<td>Be able to</td>
</tr>
<tr>
<td></td>
<td>There is a possibility of</td>
</tr>
<tr>
<td></td>
<td>It is possible to</td>
</tr>
<tr>
<td>Cannot</td>
<td>Be unable to</td>
</tr>
<tr>
<td></td>
<td>There is no possibility of</td>
</tr>
<tr>
<td></td>
<td>It is not possible to</td>
</tr>
</tbody>
</table>
Annex B Request for change form

Use this form to identify errors or deficiencies or to recommend general changes.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Requestor Information

<table>
<thead>
<tr>
<th>Name:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Organization:</td>
<td></td>
</tr>
<tr>
<td>E-Mail:</td>
<td></td>
</tr>
<tr>
<td>Phone:</td>
<td></td>
</tr>
</tbody>
</table>

Description of Change:

Section number: ______________________

Rational for Change:

Proposed Revision:

Affected Sections:
