Abstract: This specification defines the detailed specifications for Analog Audio Broadcast data structures which are used by an AV/C tuner subunit which supports analog audio broadcast systems. The AV/C tuner defines a model and command set for analog and digital tuners operating over IEEE 1394-1995. The command set makes use of the Function Control Protocol (FCP) defined by IEC 61883, Digital Interface for Consumer Electric Audio/Video Equipment standard, for the transport of audio/video command requests and responses. The audio/video devices are implemented as a common unit architecture within 1394-1995.

Keywords: Audio, Video, 1394, Digital, Interface, Tuner, analog audio
1394 Trade Association Specifications are developed within Working Groups of the 1394 Trade Association, a non-profit industry association devoted to the promotion of and growth of the market for IEEE 1394-compliant products. Participants in working groups serve voluntarily and without compensation from the Trade Association. Most participants represent member organizations of the 1394 Trade Association. The specifications developed within the working groups represent a consensus of the expertise represented by the participants.

Use of a 1394 Trade Association Specification is wholly voluntary. The existence of a 1394 Trade Association Specification is not meant to imply that there are not other ways to produce, test, measure, purchase, market or provide other goods and services related to the scope of the 1394 Trade Association Specification. Furthermore, the viewpoint expressed at the time a specification is approved and issued is subject to change brought about through developments in the state of the art and comments received from users of the specification. Users are cautioned to check to determine that they have the latest revision of any 1394 Trade Association Specification.

Comments for revision of 1394 Trade Association Specifications are welcome from any interested party, regardless of membership affiliation with the 1394 Trade Association. Suggestions for changes in documents should be in the form of a proposed change of text, together with appropriate supporting comments.

Interpretations: Occasionally, questions may arise about the meaning of specifications in relationship to specific applications. When the need for interpretations is brought to the attention of the 1394 Trade Association, the Association will initiate action to prepare appropriate responses.

Comments on specifications and requests for interpretations should be addressed to:

Editor, 1394 Trade Association
3925 W. Braker Lane
Austin, TX 78759
USA

1394 Trade Association Specifications are adopted by the 1394 Trade Association without regard to patents which may exist on articles, materials or processes, or to other proprietary intellectual property which may exist within a specification. Adoption of a specification by the 1394 Trade Association does not assume any liability to any patent owner or any obligation whatsoever to those parties who rely on the specification documents. Readers of this document are advised to make an independent determination regarding the existence of intellectual property rights which may be infringed by conformance to this specification.
Table of Contents

1. **NORMATIVE REFERENCES** ...4
 1.1 Contact Information ..4
 1.1.1 1394 Trade Association (1394 TA) ..4
 1.1.2 Association of Radio Industries and Business (ARIB) ..4
 1.1.3 Advanced Television Systems Committee (ATSC) ...4
 1.1.4 European Telecommunications Standards Institute (ETSI)4
 1.1.5 International Electrotechnical Commission (IEC) ...4
 1.1.6 The Institute of Electrical and Electronics Engineers, Inc. (IEEE)5
 1.1.7 International Telecommunication Union (ITU) ...5
1.2 1394 Trade Association Specifications ...5
1.3 Related Technical Specifications ...5

2. **INTRODUCTION** ...6
 2.1 Rules for Reserved Fields ..6

3. **GENERAL BROADCAST SYSTEM SPECIFICATIONS** ..7
 3.1 Text Field Encoding ..7
 3.2 Multiplex Descriptors ...7
 3.3 Service Descriptors ..8
 3.4 Component Descriptors ..9

4. **ANALOG AUDIO BROADCAST SYSTEM SPECIFICATION** ..11
 4.1 Analog Audio system_id ...11
 4.2 Analog Audio Profile ID Assignments ..11
 4.3 Analog Audio Multiplex Descriptor and Mandatory Attributes11
 4.4 Analog Audio Service Descriptor and Mandatory Attributes13
 4.5 Analog Audio Component Descriptor and Mandatory Attributes13
 4.6 Analog Audio DIRECT SELECT INFORMATION TYPE Search Flags15
 4.7 Analog Audio DIRECT SELECT DATA dsd_selection_specification15
 4.8 Analog Audio Object ID Assignment Rules ...15
 4.9 Analog Audio Subunit Identifier Descriptor - System Specific Information16
 4.10 Analog Audio Subunit Identifier Descriptor selection_attribute_range_specification definitions 16
 4.11 Analog Audio Tuner Status Descriptor - antenna_general_system_info Field Specification ...16
 4.12 Analog Audio Tuner Status Descriptor - demux_general_system_info Field Specification ...17
 4.13 Analog Audio Tuner Status Notification - Event Specifications17
1. Normative References

The following documents may be useful to the reader interested in learning about the full AV/C protocol and related technologies. All standards are subject to revision; the reader is encouraged to investigate the possibility of applying the most recent editions of the documents listed below.

This document is designed to be used in conjunction with the General AV/C and AV/C Tuner Subunit documents referenced below.

1.1 Contact Information

The documents referenced herein may be obtained from the following organizations:

1.1.1 1394 Trade Association (1394 TA)

The 1394 Trade Association can be contacted via the references provided on the cover page of this and all AV/C specification documents.

1.1.2 Association of Radio Industries and Business (ARIB)

Nittochi Bld. 14F 1-4-1 Kasumigaseki Chiyoda-ku Tokyo 100-0013 Japan
Phone: +81-3-5510-8590
Fax: +81-3-3592-1103

1.1.3 Advanced Television Systems Committee (ATSC)

Documents from the ATSC can be located on the following WWW site:
http://www.atsc.org

1.1.4 European Telecommunications Standards Institute (ETSI)

ETSI Secretariat
Postal Address: F-06921 Sophia Antipolis Cedex - FRANCE
Office Address: 650 Route des Lucioles - Sophia Antipolis
Valbonne - FRANCE
Phone: +33-4-92-94-42-00
Fax: +33-4-93-65-47-16
Internet: secretariat@etsi.fr
http://www.etsi.fr

1.1.5 International Electrotechnical Commission (IEC) (contact in the United States)

U.S. National Committee of the IEC ANSI
11, West 42nd Street, 13th floor
New York, NY 10036
1.1.6 The Institute of Electrical and Electronics Engineers, Inc. (IEEE)

The IEEE can be contacted via their WWW home page: http://www.ieee.org

1.1.7 International Telecommunication Union (ITU)

The ITU can be contacted via their WWW home page: http://www.itu.int

1.2 1394 Trade Association Specifications

AV/C Master Index: Guide to AV/C Specification Documents - this document is available on the 1394 Trade Association web site noted above, and is kept up to date with the latest released versions of AV/C specifications. The reader is encouraged to always consult this document for information on the latest versions of specifications mentioned here, as well as specifications which may be developed in the future.

AV/C Digital Interface Command Set General Specification Version 3.0

AV/C Digital Interface Command Set General Specification Version 2.0.1

AV/C Tuner Model Specification Version 1.0

AV/C Tuner Model Working Specification Version 1.0W

1.3 Related Technical Specifications

IEEE Std 1394-1995, Standard for a High Performance Serial Bus

ISO/IEC 13213:1994, Control and Status Register (CSR) Architecture for Microcomputer Buses

EN300 468 V1.3.1 (1997-09), Digital Video Broadcasting (DVB); Specification for Service Information (SI) in DVB Systems
2. Introduction

This document defines the Analog Audio system specification for AV/C Tuner subunits. This document is used in conjunction with the AV/C Tuner Model and Command Set specification noted in the references.

2.1 Rules for Reserved Fields

This section clarifies the rules which have always been in effect regarding how reserved fields shall be treated in command parameters and data structures for AV/C.

Unless otherwise specified (see note below), command parameters and data structure fields marked as “reserved” or “reserved for future specification” shall be set to zero by controllers on input to a target, and by targets on output to controllers.

For input operands of commands, targets shall NOT ignore fields that were reserved when the target was implemented. Rather, the target shall examine the reserved fields; if any of them are specified, then the target shall reject the command with a NOT IMPLEMENTED response.

On output data structures or parameters of commands, controllers shall ignore fields that were reserved when the controller was implemented. These rules exist to allow future extension of the specification while retaining compatibility with existing products.

NOTE: In some instances, reserved command operands or data structure fields may be specified as non-zero values. These cases will be clearly indicated in the specification. Controllers and targets shall deal with them in the same manner as defined above.
3. General Broadcast System Specifications

This section contains a review of the general structures used by all tuner subunits to represent broadcast objects - multiplex, service, component.

3.1 Text Field Encoding

The format of all text fields in the various read-only broadcast system descriptors which are maintained by the tuner subunit shall be defined according to the particular broadcast system being represented. The exception is for regional variations which are based on a given broadcast system. For example, the Japanese digital broadcast system is based on the European DVB system, but the Japanese system specifies two-byte character codes which are not in the European DVB specification. The appropriate references are provided.

3.2 Multiplex Descriptors

For convenience when reading all of the system-specific structures below, the basic format of the tuner subunit multiplex descriptor is presented here. The multiplex descriptors for each broadcast system will share this same format:

<table>
<thead>
<tr>
<th>address offset</th>
<th>msb</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>lsb</th>
</tr>
</thead>
<tbody>
<tr>
<td>00_16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>system_id</td>
</tr>
<tr>
<td>01_16</td>
<td>input</td>
<td>antenna_number</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>system_specific_multiplex_attributes_valid_flags</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02_16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>system_specific_multiplex_attributes_valid_flags</td>
</tr>
</tbody>
</table>

The `system_id` field identifies the type of system (e.g. DVB, analog video) described by this tuner object. The values are defined in the table of `system_id` values presented in the AV/C Tuner Model and Command Set specification.

The `system_id` for an analog audio tuner shall be `11_16`.

All `reserved` fields shall be treated as specified in Rules for Reserved Fields on page 6.
The input field indicates which input, either the antenna or demux destination plug, the subunit should use to get the requested service(s). The following table illustrates the values defined for this field:

<table>
<thead>
<tr>
<th>Value for input</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Take input from the antenna destination plug.</td>
</tr>
<tr>
<td>1</td>
<td>Take input from the demux destination plug.</td>
</tr>
</tbody>
</table>

The antenna_number field is the index of an antenna specifier for the subunit, as described in the subunit identifier descriptor data structure. This is a zero-based value. If the demux destination plug is selected, then the antenna_number field has no meaning in the object descriptor and the selection specifier (when used for making a selection).

The system_specific_multiplex_attributes_valid_flags are defined per system, and indicate the validity of the entries in both of the following fields (selection and information attributes). They are detailed in the sections that follow.

While the system_specific_multiplex_attributes_valid_flags are defined per system_id, all system definitions share one common flag as shown here:

<table>
<thead>
<tr>
<th>flags</th>
<th>meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1xxx xxxx (MSB)</td>
<td>The most significant bit of the multiplex attributes valid flags indicates whether the reserved fields are present or not. When this flag is 1, then the fields exist in both the selection and information attributes fields. If the flag is 0, then they do not exist.</td>
</tr>
<tr>
<td>xxxx xxxx (LSB)</td>
<td>All other flags are defined per system_id.</td>
</tr>
</tbody>
</table>

The selected flag indicates whether this multiplex is currently selected or not. The value 1 means it is selected. When a selection is being performed, the selected flag will be ignored.

The currently_available flag indicates whether this multiplex is actually available at this time. In some situations it is possible that the multiplex (or a certain part of it, such as a service) may not be available even though it is selected. If this bit is set to 1, then it is available. When a selection is being performed, the currently_available flag will be ignored.

The broadcast_system_specific_multiplex_selection_attributes field will contain the various attributes that specify a multiplex in the given system_id. These attributes are used for selection purposes. If the input is via the demux destination plug of the tuner subunit, then this field shall be empty.

The system_specific_multiplex_information_attributes field will contain the various attributes that provide useful information about a multiplex in the given system_id. These attributes are NOT used for selection purposes.

The reserved_field_length and reserved_field fields only exist in the structure if defined by the valid flag described above.

3.3 Service Descriptors

The service descriptors for each broadcast system will also share a common format, but this format is slightly different from that of the multiplex descriptor:
The fields for this common structure are all the same as defined for the multiplex descriptor above, but service descriptors do not have (or need) the input and antenna field. The reason for this is that the selection process for a given type of object (multiplex, service or component) requires the specification of the appropriate objects higher in the hierarchy.

All reserved fields shall be treated as specified in Rules for Reserved Fields on page 6.

The system_specific_service_attributes_valid_flags are defined per system_id, but all systems share one common definition:

<table>
<thead>
<tr>
<th>flags</th>
<th>meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1xxx xxxx</td>
<td>The most significant bit of the multiplex attributes valid flags indicates whether the reserved fields are present or not. When this flag is 1, then the fields exist in both the selection and information attributes fields. If the flag is 0, then they do not exist.</td>
</tr>
</tbody>
</table>

The reserved_field_length and reserved_field fields only exist in the structure if defined by the valid flag described above.

3.4 Component Descriptors

The component descriptors for each broadcast system will also share a common format, which is similar to that of the service descriptor:
The fields for this common structure are all the same as defined for the service descriptor above.

All reserved fields shall be treated as specified in Rules for Reserved Fields on page 6.

The `system_specific_component_attributes_valid_flags` are defined per `system_id`, but all systems share one common definition:

<table>
<thead>
<tr>
<th>flags</th>
<th>meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1xxxx xxxx</td>
<td>The most significant bit of the multiplex attributes valid flags indicates whether the reserved fields are present or not. When this flag is 1, then the fields exist in both the selection and information attributes fields. If the flag is 0, then they do not exist.</td>
</tr>
</tbody>
</table>

The `reserved_field_length` and `reserved_field` fields only exist in the structure if defined by the valid flag described above.
4. Analog Audio Broadcast System Specification

This section contains information about the Analog Audio broadcast system. This includes the details of system-dependent information fields for all of the descriptors used in the tuner model, object descriptors and lists, etc.

Some of the data structures defined in this section are used by the tuner subunit to indicate the information types which are currently available in the air, or the status of the tuner subunit and its plugs. Some of these structures may also be used by controllers when performing selection operations, such as DIRECT SELECT INFORMATION TYPE or DIRECT SELECT DATA.

The descriptions of the data structures will indicate how the controller should treat the information when it is provided by the tuner subunit for status reporting, or when it is provided by the controller as operands in commands being sent to the tuner subunit.

4.1 Analog Audio system_id

The system_id field for an analog audio tuner subunit shall be set to 11_{16}.

4.2 Analog Audio Profile ID Assignments

Currently, there are no profiles defined for the analog audio tuner subunit.

4.3 Analog Audio Multiplex Descriptor and Mandatory Attributes

The multiplex descriptor for analog audio has the following system specific fields in a multiplex object structure. The mandatory attributes are in **BOLD**:

<table>
<thead>
<tr>
<th>address offset</th>
<th>msb</th>
<th>lsb</th>
</tr>
</thead>
<tbody>
<tr>
<td>system_specific_multiplex_attributes_valid_flags</td>
<td></td>
<td></td>
</tr>
<tr>
<td>02_{16}</td>
<td>reserved</td>
<td>pol</td>
</tr>
<tr>
<td>03_{16}</td>
<td>reserved</td>
<td></td>
</tr>
<tr>
<td>system_specific_multiplex_selection_attributes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04_{16}</td>
<td>currently available</td>
<td>selected</td>
</tr>
<tr>
<td>05_{16}</td>
<td>polarization*</td>
<td>west_east*</td>
</tr>
<tr>
<td>06_{16}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>07_{16}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08_{16}</td>
<td>raster_frequency</td>
<td></td>
</tr>
<tr>
<td>09_{16}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0A_{16}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0B_{16}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

system_specific_multiplex_information_attributes

<< no information attributes are defined >>

NOTE: The mandatory attributes marked with () have the following rules:
a) For satellite antennas, the *polarization* attribute is mandatory

b) For movable antennas, the *west_east* and *orbital_position* attributes are mandatory

The *system_specific_multiplex_attributes_valid_flags* have the same meaning as described for the general multiplex layout described above.

For a detailed explanation of the *polarization* field, refer to the DVB Service Information specification ETS 300 468, section 6.2.6. The definition for analog audio broadcast is the same as for DVB.

A detailed explanation of the *west_east* field can be also be found in DVB SI 6.2.6. This data is not valid when the *orb_pos* valid flag is set to value 0.

For details of the *orbital_position*, refer to DVB SI 6.2.6.

The *main_frequency* field is a 24 bit value composed of the *raster_frequency* and *RF_frequency* fields. This field is encoded as defined in the DVB reference noted at the beginning of this document.

The *audio_system* field has the following structure:

FM mode:

- bit 7 (msb) 1 = FM
- bit 6 1 = stereo, 0 = mono
- bit 5 1 = low speed data channel present
- bit 4 1 = high speed data channel present

- bits 3-2 low speed data system
 - 00 = ARI system
 - 01 = reserved
 - 10 = RDS
 - 11 = reserved

- bits 1-0 high speed data system
 - 00 = HSDS
 - 01 = DARC
 - 10 = reserved
 - 11 = reserved

AM mode:

- bit 7 (msb) 0 = AM
- bit 6 1 = stereo, 0 = mono
- bit 5 1 = data channel present
- bit 4 1 = DSB (double side band modulation), 0 = SSB (single side band modulation)

- bits 3-2 low speed data system
 - 00 = to be defined
 - 01 = reserved
 - 10 = reserved
 - 11 = reserved

- bits 1-0 reserved
4.4 Analog Audio Service Descriptor and Mandatory Attributes

The analog audio service descriptor is defined as follows. The mandatory attributes are in **BOLD**:

<table>
<thead>
<tr>
<th>address offset</th>
<th>msb</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>lsb</th>
</tr>
</thead>
<tbody>
<tr>
<td>system_specific_service_attributes_valid_flags</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02_{16}</td>
<td>reserved</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>reserved</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>system_specific_service_selection_attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>03_{16}</td>
</tr>
</tbody>
</table>

<< no broadcast system specific service selection attributes are defined >>

<table>
<thead>
<tr>
<th>system_specific_service_information_attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>04_{16}</td>
</tr>
<tr>
<td>05_{16}</td>
</tr>
</tbody>
</table>

The `system_specific_service_attributes_valid_flags` fields have the same meaning as described above for the general service descriptor layout described above.

The `service_name_length` field contains the number of bytes used for the following `service_name` field.

The `service_name` field holds the text of the service name as it is derived from the air. If the name cannot be derived from the air, then the tuner shall set the `service_name_length` field to zero and there shall be no `service_name` field.

For analog audio broadcasting, services are not multiplexed together on a transponder; each transponder carries exactly one service. As defined for analog video, we describe an analog audio “multiplex” as consisting of a single service. So, a service and a multiplex are essentially the same in this case. A controller wishing to select an analog audio service should just select the multiplex.

However, this does not mean that there are no service lists and objects in the analog case. They do exist, because analog services do have components, and therefore component lists, associated with them.

4.5 Analog Audio Component Descriptor and Mandatory Attributes

The analog audio component descriptor has the following format. The mandatory attributes are in **BOLD**:
The `system_specific_component_attributes_valid_flags` for the component have the same meaning as defined for the general component descriptor described above.

The `data_type_indicator` field specifies what kind of component this is:

```
<table>
<thead>
<tr>
<th>data_type_indicator</th>
<th>type of component</th>
</tr>
</thead>
<tbody>
<tr>
<td>00_{16}</td>
<td>reserved</td>
</tr>
<tr>
<td>01_{16}</td>
<td>audio</td>
</tr>
<tr>
<td>02_{16}</td>
<td>data</td>
</tr>
<tr>
<td>03_{16}</td>
<td>reserved</td>
</tr>
</tbody>
</table>
```

The `data_type_dependent` field will have a format that depends on the `data_type_indicator`. The three formats are defined as follows:

<table>
<thead>
<tr>
<th>address offset</th>
<th>data_type_dependent field for an analog audio, audio component</th>
<th>reserved</th>
</tr>
</thead>
<tbody>
<tr>
<td>04_{16}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In the case of an analog audio “audio component”, there is no information in the `data_type_dependent` field; it shall be set to zero.

For an analog audio data component, the fields have these meanings:

<table>
<thead>
<tr>
<th>address offset</th>
<th>data_type_dependent field for an analog audio data component</th>
<th>reserved</th>
</tr>
</thead>
<tbody>
<tr>
<td>04_{16}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The `component_name_length` field contains the number of bytes used for the following `component_name` field.

The `component_name` fields hold the length and text of the component name, if it is available from the air. If it is not available, then the length field shall be zero and there shall be no `component_name` field.
4.6 Analog Audio DIRECT SELECT INFORMATION TYPE Search Flags

The search flags used in the DSIT control command for an analog audio selection are defined as follows:

<table>
<thead>
<tr>
<th>address offset</th>
<th>msb</th>
<th>main_freq_up</th>
<th>main_freq_down</th>
<th>lsb</th>
</tr>
</thead>
<tbody>
<tr>
<td>00_{16}</td>
<td>orb_pos</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

The `main_freq_up` and `main_freq_down` search flags allow a controller to initiate a search based on the frequency, in either the up or down direction. The `orb_pos` flag allows a search based on this criteria. Only one search flag may be set for any operation.

All other flags shall be treated as reserved, as specified in Rules for Reserved Fields on page 6.

4.7 Analog Audio DIRECT SELECT DATA
dsd_selection_specification

Currently there is no `dsd_selection_specification` structure defined for the analog audio system.

4.8 Analog Audio Object ID Assignment Rules

When the tuner subunit creates analog audio objects (multiplex, service and component), it shall follow these rules for assigning object ID’s. The format of the service object ID depends on whether PI information is available in the signal:

<table>
<thead>
<tr>
<th>object entry type</th>
<th>msb</th>
<th>ID assignment rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>multiplex << implementation dependent >></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(must be 4 bytes in length)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>service (by PI code)</td>
<td>id_format</td>
<td>reserved</td>
</tr>
<tr>
<td></td>
<td>00_{16}</td>
<td>PI (MSB)</td>
</tr>
<tr>
<td></td>
<td>PI (LSB)</td>
<td></td>
</tr>
<tr>
<td>service (by frequency)</td>
<td>id_format</td>
<td>reserved</td>
</tr>
<tr>
<td></td>
<td>Frequency (MSB)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frequency</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frequency (LSB)</td>
<td></td>
</tr>
<tr>
<td>component << implementation dependent >></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(must be 4 bytes in length)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The format of the `multiplex` and `component` object ID values for analog audio will depend on the tuner subunit implementation.

The format of the `service` object ID values for all analog audio tuners shall be as specified above.
The \textit{id_format} flag bit indicates whether the service object ID is specified as PI code (= 0) or as a frequency (= 1).

\section*{4.9 Analog Audio Subunit Identifier Descriptor - System Specific Information}

Currently there is no system specific information defined for the analog audio subunit identifier descriptor.

\section*{4.10 Analog Audio Subunit Identifier Descriptor selection_attribute_range_specification definitions}

The analog audio tuner model specifies that the following selection attributes have range specifications. This list is presented in the order in which the selection_attribute_range_specification structures are packed into the system_specific_antenna_range_specification structure:

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline
attribute & msb & analog audio selection attributes with range specifications & lsb \\
A polarization & & reserved & \\
B position & west_east & reserved & \\
 & orbital_position (MSB) & orbital_position (LSB) & \\
C main frequency & raster_frequency & frequency (MS bits) & \\
 & frequency & frequency (LSB) & \\
D audio system & & audio_system & \\
\hline
\end{tabular}

The size_of_attribute for each of the selection attributes indicated above can be derived from the number of rows used to specify the attribute. For example, the position attribute is 3 bytes, composed of the west_east bit flag, a reserved field, and 2 bytes for the orbital_position field.

\section*{4.11 Analog Audio Tuner Status Descriptor - antenna_general_system_info Field Specification}

The format of the antenna_general_system_info field of a tuner subunit which supports the analog audio system appears as follows:
4.12 Analog Audio Tuner Status Descriptor - demux_general_system_info Field Specification

There is no demux_general_system_info specified for the analog audio tuner subunit.

4.13 Analog Audio Tuner Status Notification - Event Specifications

Currently there are no system specific events defined for the analog audio tuner subunit.